Last active
May 13, 2020 10:16
-
-
Save laMudri/dd47efce6c35538a9eb89cf37780dccb to your computer and use it in GitHub Desktop.
A version of λR implemented in Prolog
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module(quant). | |
% Database (algebra) | |
%! type ann := zero | one | omega. | |
%! zero(+X:ann) is semidet. | |
%! add(-X:ann, -Y:ann, +Z:ann) is nondet. | |
%! one(+X:ann) is semidet. | |
%! mult(+X:ann, -Y:ann, +Z:ann) is nondet. | |
%! del(+X:ann) is semidet. | |
%! dup(+X:ann, -Y:ann, -Z:ann) is nondet. | |
zero(zero). | |
zero(omega). | |
add(zero,zero,zero). | |
add(one,zero,one). | |
add(zero,one,one). | |
add(omega,omega,omega). | |
one(one). | |
one(omega). | |
mult(zero,_,zero). | |
mult(one,Y,Y). | |
mult(omega,zero,zero). | |
mult(omega,omega,omega). | |
del(_). | |
dup(X,X,X). | |
% Lifting to vectors | |
%! zerov(+R:list(ann)) is semidet. | |
%! addv(-P:list(ann), -Q:list(ann), +R:list(ann)) is nondet. | |
%! delv(+R:list(ann)) is semidet. | |
%! dupv(+P:list(ann), -Q:list(ann), -R:list(ann)) is nondet. | |
%! basis(+R:list(ann), +I:nat) is semidet. | |
%! scale(+X:ann, -P:list(ann), +Q:list(ann)) is nondet. | |
zerov(nil). | |
zerov(snoc(R,X)) :- zero(X), zerov(R). | |
addv(nil,nil,nil). | |
addv(snoc(P,X),snoc(Q,Y),snoc(R,Z)) :- add(X,Y,Z), addv(P,Q,R). | |
delv(nil). | |
delv(snoc(R,X)) :- del(X), delv(R). | |
dupv(nil,nil,nil). | |
dupv(snoc(P,X),snoc(Q,Y),snoc(R,Z)) :- dup(X,Y,Z), dupv(P,Q,R). | |
basis(snoc(R,X),z) :- one(X), zerov(R). | |
basis(snoc(R,X),s(I)) :- zero(X), basis(R,I). | |
scale(_,nil,nil). | |
scale(X,snoc(P,Y),snoc(Q,Z)) :- mult(X,Y,Z), scale(X,P,Q). | |
% Context operations | |
%! type ctx := ctx(list(ann), list(ty)). | |
%! lookup(+G:list(a), +I:nat, -A:a) is semidet. | |
lookup(snoc(_,A),z,A). | |
lookup(snoc(G,_),s(I),A) :- lookup(G,I,A). | |
%! empty(-RG:ctx) is det. | |
empty(ctx(nil,nil)). | |
%! bind(+RG:ctx, +RhoA:(ann, ty), -RGx:ctx) is det. | |
bind(ctx(R,G),(Rho,A),ctx(snoc(R,Rho),snoc(G,A))). | |
% Type system | |
% | |
% v - variable (de Bruijn) | |
% a - type annotation/cut | |
% u - embedding (underline) | |
% c - constructor | |
% e - eliminator | |
% | |
% Types: | |
% A, B, C ::= fun((Rho,A),B) | unit | tensor((Pi,A),(Rho,B)) | |
% | top | with(A,B) | empty | plus((Pi,A),(Rho,B)) | |
% fun ~ ⊸, unit ~ I, tensor ~ ⊗, top ~ ⊤, with ~ &, empty ~ 0, plus ~ ⊕ | |
% | |
% Some rules: | |
% | |
% I : RΓ ⊐ A A ∋ S S ∈ B B ≤ A | |
% ------------- ---------- ------------ | |
% RΓ ⊢ v(I) ∈ A a(A,S) ∈ A A ∋ u(S) | |
% | |
% Plus rules for each type former... | |
%! subty(+A:ty, +B:ty). | |
subty(A,A). | |
%! syn(+RG:ctx, +E:tm(syn), -A:ty). | |
%! chk(+RG:ctx, +A:ty, +S:tm(chk)). | |
:- discontiguous syn/3. | |
:- discontiguous chk/3. | |
% Variables | |
syn(ctx(R,G),v(I),A) :- basis(R,I), lookup(G,I,A). | |
% Change of direction | |
syn(RG,a(A,S),A) :- chk(RG,A,S). | |
chk(RG,A,u(S)) :- syn(RG,S,B), subty(B,A). | |
% Function | |
syn(ctx(R,G),e(F,S),B) :- | |
addv(P,RhoQ,R), scale(Rho,Q,RhoQ), | |
syn(ctx(P,G),F,fun((Rho,A),B)), chk(ctx(Q,G),A,S). | |
chk(RG,fun((Rho,A),B),c(T)) :- bind(RG,(Rho,A),RGx), chk(RGx,B,T). | |
% Empty tensor product | |
syn(ctx(R,G),e(E,C,S),C) :- addv(P,Q,R), syn(ctx(P,G),E,unit), chk(Q,C,S). | |
chk(ctx(R,_),unit,c()) :- zerov(R). | |
% Tensor product | |
syn(ctx(R,G),e(E,C,S),C) :- | |
addv(P,Q,R), syn(ctx(P,G),E,tensor((Pi,A),(Rho,B))), | |
bind(ctx(Q,G),(Pi,A),QGx), bind(QGx,(Rho,B),QGxy), chk(QGxy,C,S). | |
chk(ctx(R,G),tensor((Pi,A),(Rho,B)),c(S,T)) :- | |
addv(PiP,RhoQ,R), scale(Pi,PiP,P), chk(ctx(P,G),A,S), | |
scale(Rho,RhoQ,Q), chk(ctx(Q,G),B,T). | |
% Empty with product | |
chk(ctx(R,_),top,c()) :- delv(R). | |
% With product | |
syn(RG,e(E,l),A) :- syn(RG,E,with(A,_)). | |
syn(RG,e(E,r),B) :- syn(RG,E,with(_,B)). | |
chk(ctx(R,G),with(A,B),c(S,T)) :- | |
dupv(R,P,Q), chk(ctx(P,G),A,S), chk(ctx(Q,G),B,T). | |
% Empty sum | |
syn(ctx(R,G),e(E,C),C) :- addv(P,Q,R), syn(ctx(P,G),E,empty), delv(Q). | |
% Sum | |
syn(ctx(R,G),e(E,C,S,T),C) :- | |
addv(P,Q,R), syn(ctx(P,G),E,plus((Pi,A),(Rho,B))), dupv(Q,Qx,Qy), | |
bind(ctx(Qx,G),(Pi,A),QGx), bind(ctx(Qy,G),(Rho,B),QGy), | |
chk(QGx,C,S), chk(QGy,C,T). | |
chk(ctx(R,G),plus((Pi,A),_),c(l,S)) :- scale(Pi,P,R), chk(ctx(P,G),A,S). | |
chk(ctx(R,G),plus(_,(Rho,B)),c(r,T)) :- scale(Rho,Q,R), chk(ctx(Q,G),B,T). | |
% Examples: | |
%! chkclosed(+A:ty, +S:tm(chk)). | |
chkclosed(A,S) :- chk(ctx(nil,nil),A,S). | |
% swap⊗ : 1(1a ⊗ 1b) ⊸ 1b ⊗ 1a ∋ λx. let y, z = x in z, y | |
:- chkclosed(fun((one,tensor((one,a),(one,b))),tensor((one,b),(one,a))), | |
c(u(e(v(z),_,c(u(v(z)),u(v(s(z)))))))). | |
% unitl⊕ : 1(10 ⊕ 1a) ⊸ a ∋ λx. case x of { inl y ↦ case y of {}, inr y ↦ y } | |
:- chkclosed(fun((one,plus((one,empty),(one,a))),a), | |
c(u(e(v(z),_,u(e(v(z),_)),u(v(z)))))). | |
% dup& : 1a ⊸ a & a ∋ λx. x, x | |
:- chkclosed(fun((one,a),with(a,a)), c(c(u(v(z)),u(v(z))))). | |
% extract : ωa ⊸ a ∋ λx. x | |
:- chkclosed(fun((omega,a),a), c(u(v(z)))). | |
% duplicate : ωa ⊸ 0I ⊗ ω(0I ⊗ ωa) ∋ λx. (), (), x | |
:- chkclosed(fun((omega,a), | |
tensor((zero,unit),(omega,tensor((zero,unit),(omega,a))))), | |
c(c(c(),c(c(),u(v(z)))))). | |
% expsplit : ω(a & b) ⊸ ωa ⊗ ωb ∋ λx. (x.fst, x.snd) | |
:- chkclosed(fun((omega,with(a,b)),tensor((omega,a),(omega,b))), | |
c(c(u(e(v(z),l)),u(e(v(z),r))))). | |
% expjoin : 1(ωa ⊗ ωb) ⊸ 0I ⊗ ω(a & b) ∋ λxy. let x, y = xy in (), x, y | |
:- chkclosed(fun((one,tensor((omega,a),(omega,b))), | |
tensor((zero,unit),(omega,with(a,b)))), | |
c(u(e(v(z),_,c(c(),c(u(v(s(z))),u(v(z)))))))). |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment