Last active
December 3, 2022 20:25
-
-
Save lachesis/a47212c848430e16e7d1ec6d85515fc3 to your computer and use it in GitHub Desktop.
Display AQI for a given LAT/LNG using data from https://fire.airnow.gov (AirNow, AirSis, Purple Air)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python3 | |
# Prints current PM2.5 concentrations based on fire.airnow.gov map | |
# pip3 install requests pytz geobuf | |
# usage: LAT=37.9053745 LNG=-122.3048239 MAX_FEATURES=6 MAX_DIST=11 python3 airnow.py | |
# optional, for AQI instead of raw concentration (µg/m³): pip3 install python-aqi and pass AQI=1 | |
import collections | |
import datetime | |
import math | |
import os | |
import requests | |
import pytz | |
SOURCES = [ | |
'https://s3-us-west-2.amazonaws.com/airfire-data-exports/maps/geobuf/purple_air_epa_qc.pbf', | |
'https://s3-us-west-2.amazonaws.com/airfire-data-exports/maps/geobuf/airnow_PM2.5_latest10.pbf', | |
'https://s3-us-west-2.amazonaws.com/airfire-data-exports/maps/geobuf/airsis_PM2.5_latest10.pbf', | |
#'https://s3-us-west-2.amazonaws.com/airfire-data-exports/dev/test_pa/purple_air_epa_qc.geojson', | |
#'https://s3-us-west-2.amazonaws.com/airfire-data-exports/monitoring/v1/geojson/airnow_PM2.5_latest10.geojson', | |
] | |
LAT = float(os.getenv('LAT')) | |
LNG = float(os.getenv('LNG')) | |
MAX_FEATURES = int(os.getenv('MAX_FEATURES', 5)) | |
MAX_DIST = float(os.getenv('MAX_DIST') or 100) | |
TZ = os.getenv('TZ') or 'America/Los_Angeles' | |
def distance(origin, destination): | |
""" | |
Calculate the Haversine distance. | |
Parameters | |
---------- | |
origin : tuple of float | |
(lat, long) | |
destination : tuple of float | |
(lat, long) | |
Returns | |
------- | |
distance_in_km : float | |
Examples | |
-------- | |
>>> origin = (48.1372, 11.5756) # Munich | |
>>> destination = (52.5186, 13.4083) # Berlin | |
>>> round(distance(origin, destination), 1) | |
504.2 | |
""" | |
lat1, lon1 = origin | |
lat2, lon2 = destination | |
radius = 6371 # km | |
dlat = math.radians(lat2 - lat1) | |
dlon = math.radians(lon2 - lon1) | |
a = (math.sin(dlat / 2) * math.sin(dlat / 2) + | |
math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * | |
math.sin(dlon / 2) * math.sin(dlon / 2)) | |
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) | |
d = radius * c | |
return d | |
def colprint(lines): | |
widths = {} | |
for l in lines: | |
for i, c in enumerate(l): | |
w = len(c) | |
ow = widths.get(i, 0) | |
w = max(ow, w) | |
widths[i] = w | |
for l in lines: | |
for i, c in enumerate(l): | |
ow = widths[i] | |
w = len(c) | |
print(c, ' '*(ow-w), end=" ") | |
print() | |
def conc_or_aqi(conc): | |
if os.getenv('AQI'): | |
try: | |
import aqi | |
aqi_val = float(aqi.to_iaqi(aqi.POLLUTANT_PM25, conc, algo=aqi.ALGO_EPA)) | |
return '{:.0f} AQI'.format(aqi_val) | |
except ImportError: | |
pass | |
return "{0:5.1f} µg/m³".format(conc) | |
def main(): | |
lines = [] | |
features = [] | |
for url in SOURCES: | |
resp = requests.get(url) | |
if url.endswith('.pbf'): | |
import geobuf | |
js = geobuf.decode(resp.content) | |
else: | |
js = resp.json() | |
for f in js['features']: | |
lng, lat = f['geometry']['coordinates'] | |
dist = distance((LAT, LNG), (lat, lng)) | |
if dist <= MAX_DIST: | |
features.append((dist, f)) | |
# closest first | |
features.sort(key=lambda f: f[0]) | |
# which sources did we receive data for? | |
features_by_source = collections.defaultdict(list) | |
for dist, f in features: | |
features_by_source[f['properties']['dataSource']].append((dist, f)) | |
unique_sources = len(features_by_source) | |
# truncate number of features to show | |
show_features = features[:MAX_FEATURES] | |
# but show at least one feature from every available source | |
show_sources = set(f['properties']['dataSource'] for _, f in show_features) | |
for source in features_by_source: | |
if source not in show_sources: | |
show_features = show_features[:-1] + [features_by_source[source][0]] | |
show_sources.add(source) | |
for d, f in show_features: | |
p = f['properties'] | |
t = datetime.datetime.strptime(p['lastValidUTCTime'], "%Y-%m-%d %H:%M:%S") | |
t = pytz.utc.localize(t).astimezone(pytz.timezone(TZ)) | |
t = t.strftime("%Y-%m-%d %H:%M:%S") | |
lines.append([ | |
"({d:5.2f} km)".format(d=d), | |
t, | |
p['dataSource'], | |
p['siteName'], | |
conc_or_aqi(p['PM2.5_1hr']), | |
]) | |
colprint(lines) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment