Created
August 28, 2018 16:11
-
-
Save lakshmanok/4858f69a1a456ef169135a8b0e018952 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train_and_evaluate(output_dir, hparams): | |
STEPS_PER_EVAL = 1000 | |
max_steps = hparams['train_steps'] | |
eval_batch_size = min(1024, hparams['num_eval_images']) | |
eval_batch_size = eval_batch_size - eval_batch_size % 8 # divisible by num_cores | |
tf.logging.info('train_batch_size=%d eval_batch_size=%d max_steps=%d', | |
hparams['train_batch_size'], | |
eval_batch_size, | |
max_steps) | |
# TPU change 3 | |
if hparams['use_tpu']: | |
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( | |
hparams['tpu'], | |
zone=hparams['tpu_zone'], | |
project=hparams['project']) | |
config = tf.contrib.tpu.RunConfig( | |
cluster=tpu_cluster_resolver, | |
model_dir=output_dir, | |
save_checkpoints_steps=STEPS_PER_EVAL, | |
tpu_config=tf.contrib.tpu.TPUConfig( | |
iterations_per_loop=STEPS_PER_EVAL, | |
per_host_input_for_training=True)) | |
else: | |
config = tf.contrib.tpu.RunConfig() | |
estimator = tf.contrib.tpu.TPUEstimator( # TPU change 4 | |
model_fn=image_classifier, | |
config=config, | |
params=hparams, | |
model_dir=output_dir, | |
train_batch_size=hparams['train_batch_size'], | |
eval_batch_size=eval_batch_size, | |
use_tpu=hparams['use_tpu'] | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment