Created
December 3, 2018 02:59
-
-
Save lambdabaa/fc9792149d497f525b496638bfe82ebf to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
from PIL import Image | |
import csv | |
import cairocffi as cairo | |
import json | |
import numpy as np | |
import os | |
# See https://github.com/googlecreativelab/quickdraw-dataset/issues/19 | |
def vector_to_raster(vector_images, side=28, line_diameter=16, padding=16, bg_color=(0,0,0), fg_color=(1,1,1)): | |
""" | |
padding and line_diameter are relative to the original 256x256 image. | |
""" | |
original_side = 256. | |
surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, side, side) | |
ctx = cairo.Context(surface) | |
ctx.set_antialias(cairo.ANTIALIAS_BEST) | |
ctx.set_line_cap(cairo.LINE_CAP_ROUND) | |
ctx.set_line_join(cairo.LINE_JOIN_ROUND) | |
ctx.set_line_width(line_diameter) | |
# scale to match the new size | |
# add padding at the edges for the line_diameter | |
# and add additional padding to account for antialiasing | |
total_padding = padding * 2. + line_diameter | |
new_scale = float(side) / float(original_side + total_padding) | |
ctx.scale(new_scale, new_scale) | |
ctx.translate(total_padding / 2., total_padding / 2.) | |
raster_images = [] | |
for vector_image in vector_images: | |
# clear background | |
ctx.set_source_rgb(*bg_color) | |
ctx.paint() | |
bbox = np.hstack(vector_image).max(axis=1) | |
offset = ((original_side, original_side) - bbox) / 2. | |
offset = offset.reshape(-1,1) | |
centered = [stroke + offset for stroke in vector_image] | |
# draw strokes, this is the most cpu-intensive part | |
ctx.set_source_rgb(*fg_color) | |
for xv, yv in centered: | |
ctx.move_to(xv[0], yv[0]) | |
for x, y in zip(xv, yv): | |
ctx.line_to(x, y) | |
ctx.stroke() | |
data = surface.get_data() | |
raster_image = np.copy(np.asarray(data)[::4]) | |
raster_images.append(raster_image) | |
return raster_images | |
def main(): | |
if not os.path.exists('./images'): | |
os.makedirs('./images') | |
X = [] | |
ids = [] | |
with open('./test_simplified.csv', 'rb') as f: | |
reader = csv.reader(f) | |
count = 0 | |
for row in reader: | |
if count != 0: | |
x = json.loads(row[2]) | |
X.append(x) | |
ids.append(row[0]) | |
count += 1 | |
Y = vector_to_raster(np.array(X)) | |
for idx, y in enumerate(Y): | |
img = Image.fromarray(y.reshape((28, 28))) | |
img.save('./images/%s.jpg' % ids[idx]) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment