Created
May 27, 2020 21:06
-
-
Save lambdaofgod/b7c2f5a628945923a8dd841beecb9a68 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def build_segmentation_model( | |
input_shape, | |
n_classes, | |
base_block_size=BASE_BLOCK_SIZE, | |
base_dropout_rate=BASE_DROPOUT_RATE, | |
activation=ACTIVATION | |
): | |
# Build U-Net segmentation_model | |
inputs = layers.Input(input_shape) | |
s = layers.Lambda(lambda x: x - 0.5) (inputs) | |
c1 = layers.Conv2D(base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same')(s) | |
c1 = layers.BatchNormalization()(c1) | |
c1 = layers.Dropout(base_dropout_rate) (c1) | |
c1 = layers.Conv2D(base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (c1) | |
c1 = layers.BatchNormalization()(c1) | |
p1 = layers.MaxPooling2D((2, 2)) (c1) | |
c2 = layers.Conv2D(2 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (p1) | |
c2 = layers.BatchNormalization()(c2) | |
c2 = layers.Dropout(base_dropout_rate) (c2) | |
c2 = layers.Conv2D(2 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (c2) | |
c2 = layers.BatchNormalization()(c2) | |
p2 = layers.MaxPooling2D((2, 2)) (c2) | |
c3 = layers.Conv2D(4 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (p2) | |
c3 = layers.BatchNormalization()(c3) | |
c3 = layers.Dropout(2 * base_dropout_rate) (c3) | |
c3 = layers.Conv2D(4 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (c3) | |
c3 = layers.BatchNormalization()(c3) | |
p3 = layers.MaxPooling2D((2, 2)) (c3) | |
c4 = layers.Conv2D(8 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (p3) | |
c4 = layers.BatchNormalization()(c4) | |
c4 = layers.Dropout(2 * base_dropout_rate) (c4) | |
c4 = layers.Conv2D(8 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (c4) | |
c4 = layers.BatchNormalization()(c4) | |
p4 = layers.MaxPooling2D(pool_size=(2, 2)) (c4) | |
c5 = layers.Conv2D(16 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (p4) | |
c5 = layers.BatchNormalization()(c5) | |
c5 = layers.Dropout(0.3) (c5) | |
c5 = layers.Conv2D(16 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (c5) | |
c5 = layers.BatchNormalization()(c5) | |
u6 = layers.Conv2DTranspose(4 * base_block_size, (2, 2), strides=(2, 2), padding='same') (c5) | |
u6 = layers.concatenate([u6, c4]) | |
c6 = layers.Conv2D(8 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (u6) | |
c6 = layers.BatchNormalization()(c6) | |
c6 = layers.Dropout(2 * base_dropout_rate) (c6) | |
c6 = layers.Conv2D(8 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (c6) | |
c6 = layers.BatchNormalization()(c6) | |
u7 = layers.Conv2DTranspose(2 * base_block_size, (2, 2), strides=(2, 2), padding='same') (c6) | |
u7 = layers.concatenate([u7, c3]) | |
c7 = layers.Conv2D(4 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (u7) | |
c7 = layers.BatchNormalization()(c7) | |
c7 = layers.Dropout(2 * base_dropout_rate) (c7) | |
c7 = layers.Conv2D(4 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (c7) | |
c7 = layers.BatchNormalization()(c7) | |
u8 = layers.Conv2DTranspose(base_block_size, (2, 2), strides=(2, 2), padding='same') (c7) | |
u8 = layers.concatenate([u8, c2]) | |
c8 = layers.Conv2D(2 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (u8) | |
c8 = layers.BatchNormalization()(c8) | |
c8 = layers.Dropout(base_dropout_rate) (c8) | |
c8 = layers.Conv2D(2 * base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (c8) | |
c8 = layers.BatchNormalization()(c8) | |
u9 = layers.Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same') (c8) | |
u9 = layers.concatenate([u9, c1], axis=3) | |
c9 = layers.Conv2D(base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (u9) | |
c9 = layers.BatchNormalization()(c9) | |
c9 = layers.Dropout(base_dropout_rate) (c9) | |
c9 = layers.Conv2D(base_block_size, (3, 3), activation=activation, kernel_initializer='he_normal', padding='same') (c9) | |
c9 = layers.BatchNormalization()(c9) | |
out = layers.Conv2D(n_classes, (1, 1)) (c9) | |
return models.Model(inputs=[inputs], outputs=[out]) | |
def setup_segmentation_model( | |
input_shape=(IMG_HEIGHT, IMG_WIDTH, 3), | |
n_classes=N_CLASSES, | |
loss=losses.SparseCategoricalCrossentropy(from_logits=True), | |
optimizer='adam', | |
metrics=['accuracy'] | |
): | |
segmentation_model = build_segmentation_model(input_shape, n_classes) | |
segmentation_model.compile(optimizer=optimizer, loss=loss, metrics=metrics) | |
return segmentation_model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment