-
-
Save lambder/6797022 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(use 'com.lambder.deriva.core) | |
(def N | |
'(/ 1 | |
(+ 1 | |
(exp (- | |
(* -0.07056 (pow x 3)) | |
(* -1.5976 x))))) | |
(def d1 '(/ (+ (/ F K) (* T (/ (sq sigma) 2))))) | |
(def d2 '(/ (- (/ F K) (* T (/ (sq sigma) 2))))) | |
(def call | |
`(* | |
(exp (neg (* r T)) | |
(- | |
(* F ~(bind N x d1)) | |
(* K ~(bind N x d2))))) | |
(def put | |
`(* | |
(exp (neg (* r T)) | |
(- | |
(* F ~(bind N x (neg d1))) | |
(* K ~(bind N x (neg d2)))))) | |
(defn black-expression [call?] call put) | |
;; usage | |
(def black-model-with-sensitivities (∂ (bind (black-expression true) T 0.523) F K r)) | |
(black-model-with-sensitivities 12.3 14.3 0.03) | |
(black-model-with-sensitivities 12.3 11.0 0.03) | |
(black-model-with-sensitivities 12.3 11.0 0.02) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import static com.lambder.deriva.Deriva.*; | |
public class Formulas { | |
public static Expression black(final boolean isCall) { | |
// Logistic approximation of Cumulated Standard Normal Distribution | |
// 1/( e^(-0.07056 * x^3 - 1.5976*x) + 1) | |
Expression N = div(1.0, | |
add( | |
exp( | |
sub( | |
mul( | |
-0.07056, | |
pow('x', 3)), | |
mul(-1.5976, 'x'))), | |
1.0)); | |
// ( F/K+T*σ^2/2 ) / σ*sqrt(T) | |
Expression d1 = div( | |
add( | |
div('F', 'K'), | |
mul(div(sq("sigma"), 2.0), 'T')), | |
mul("sigma", sqrt('T'))); | |
// ( F/K-T*σ^2/2 ) / σ*sqrt(T) | |
Expression d2 = div( | |
sub( | |
div('F', 'K'), | |
mul(div(sq("sigma"), 2.0), 'T')), | |
mul("sigma", sqrt('T'))); | |
// e^(-r*T) * ( F*N(d1)-K*N(d2) ) | |
Expression call = mul( | |
exp(neg(mul('r', 'T'))), | |
sub( | |
mul('F', N.bind('x', d1)), | |
mul('K', N.bind('x', d2)))); | |
// e^(-r*T) * ( F*N(-d2)-K*N(-d1) ) | |
Expression put = mul( | |
exp(neg(mul('r', 'T'))), | |
sub( | |
mul('F', N.bind('x', neg(d2))), | |
mul('K', N.bind('x', neg(d1))))); | |
return isCall ? call : put; | |
} | |
// usage | |
public static void main(String[] args) { | |
// lets fix timeToExpiry to 0.523 and get only strike, forward and lognormalVol sensitivities | |
Expression blackModel = black(true).bind('T', 0.523); | |
Function1D fun = d(blackModel, 'F', 'K', 'r').function('F', 'K', 'r'); | |
fun.execute(12.3, 14.3, 0.03); | |
fun.execute(12.3, 11.0, 0.03); | |
fun.execute(12.3, 11.0, 0.02); | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Expression expr = sin(mul(sq('x'), sq('y'))); | |
Vector1D g_expr = vector(expr, d(expr, 'x'), d(expr, 'y')); | |
System.out.println(g_expr.describe()); | |
Expression: | |
[(sin (mul (sq x) (sq y))) | |
(d (sin (mul (sq x) (sq y))) x) | |
(d (sin (mul (sq x) (sq y))) y)] | |
gets turned into: | |
(vector | |
(sin (* (sq x) (sq y))) | |
(* (cos (* (sq x) (sq y))) (* (* 2 x) (sq y))) | |
(* (cos (* (sq x) (sq y))) (* (* 2 y) (sq x)))) | |
and into: | |
final double G__33 = x; // x | |
final double G__32 = sq( G__33 ); // (sq x) | |
final double G__31 = y; // y | |
final double G__30 = 2; // 2 | |
final double G__29 = G__30 * G__31; // (* 2 y) | |
final double G__28 = G__29 * G__32; // (* (* 2 y) (sq x)) | |
final double G__26 = sq( G__31 ); // (sq y) | |
final double G__23 = G__32 * G__26; // (* (sq x) (sq y)) | |
final double G__22 = cos( G__23 ); // (cos (* (sq x) (sq y))) | |
final double G__21 = G__22 * G__28; // (* (cos (* (sq x) (sq y))) (* (* 2 y) (sq x))) | |
final double G__16 = G__30 * G__33; // (* 2 x) | |
final double G__15 = G__16 * G__26; // (* (* 2 x) (sq y)) | |
final double G__8 = G__22 * G__15; // (* (cos (* (sq x) (sq y))) (* (* 2 x) (sq y))) | |
final double G__2 = sin( G__23 ); // (sin (* (sq x) (sq y))) | |
final double G__1 = [ G__2, G__8, G__21 ]; // (vector (sin (* (sq x) (sq y))) (* (cos (* (sq x) (sq y))) (* (* 2 x) (sq y))) (* (cos (* (sq x) (sq y))) (* (* 2 y) (sq x)))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment