mkdir docs/
cd docs/
pip install sphinx sphinx-rtd-theme myst-parser recommonmark
#!/bin/bash | |
# Backup existing repo files | |
echo "Creating backup of existing repo files..." | |
cd /etc/yum.repos.d/ | |
mkdir -p backup | |
mv CentOS-* backup/ | |
# Create new CentOS-Base.repo file | |
echo "Creating new CentOS-Base.repo file..." |
import warnings
from fastapi import FastAPI
from langchain_experimental.llms.ollama_functions import OllamaFunctions
from pydantic import BaseModel
from typing import List
warnings.filterwarnings('ignore')
app = FastAPI()
note that %21RotqTsIrBvXaPAbhiC%3Atwkl.chat
is the room_id
after url encoding it using this tool
curl --location --request PUT 'http://localhost:8008/_matrix/client/r0/pushrules/global/room/%21RotqTsIrBvXaPAbhiC%3Atwkl.chat' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <user_token>' \
--data '{
''' | |
Steps for making a RAG system in Langchain framework | |
1. Prepare the data (knowledge base) | |
2. Use the Loader object to load the data in the proper format | |
3. Chunk the data into appropriate size | |
4. Create Embedding and Retriever | |
4.1. Use Embedding model like BAAI/bge-base-en-v1.5 from HuggingFace | |
4.2. Create a Vector database like FAISS (Facebook AI Similarity Search). And the Retriever is a an object from the DB class. E.g. `retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 4})` |
apt install python3 python3-pip wget curl unzip portaudio19-dev virtualenv libespeak1 libespeak-dev -y | |
cd /opt | |
wget https://github.com/lamoboos223/demo-faster-whisper/archive/refs/heads/master.zip | |
unzip master.zip | |
rm master.zip | |
cd demo-faster-whisper-master | |
virtualenv myenv | |
source myenv/bin/activate | |
python3 -m pip install -r requirements.txt | |
python3 __init__.py |
install on linux
curl -fsSL https://ollama.com/install.sh | sh