Last active
December 13, 2023 00:59
-
-
Save lanius/98b7edca1b29c949fcf1 to your computer and use it in GitHub Desktop.
3D reconstruction from stereo images in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import argparse | |
import cv2 | |
import numpy as np | |
def calc_disparity(left_image, right_image): | |
window_size = 3 | |
min_disp = 1 | |
num_disp = 16*2 | |
stereo = cv2.StereoSGBM( | |
minDisparity=min_disp, | |
numDisparities=num_disp, | |
SADWindowSize=window_size, | |
uniquenessRatio=10, | |
speckleWindowSize=100, | |
speckleRange=32, | |
disp12MaxDiff=1, | |
P1=8*3*window_size**2, | |
P2=32*3*window_size**2, | |
fullDP=False | |
) | |
return stereo.compute(left_image, right_image).astype(np.float32) / 16.0 | |
def remove_invalid(disp_arr, points, colors): | |
mask = ( | |
(disp_arr > disp_arr.min()) & | |
np.all(~np.isnan(points), axis=1) & | |
np.all(~np.isinf(points), axis=1) | |
) | |
return points[mask], colors[mask] | |
def calc_point_cloud(image, disp, q): | |
points = cv2.reprojectImageTo3D(disp, q).reshape(-1, 3) | |
colors = image.reshape(-1, 3) | |
return remove_invalid(disp.reshape(-1), points, colors) | |
def project_points(points, colors, r, t, k, dist_coeff, width, height): | |
projected, _ = cv2.projectPoints(points, r, t, k, dist_coeff) | |
xy = projected.reshape(-1, 2).astype(np.int) | |
mask = ( | |
(0 <= xy[:, 0]) & (xy[:, 0] < width) & | |
(0 <= xy[:, 1]) & (xy[:, 1] < height) | |
) | |
return xy[mask], colors[mask] | |
def calc_projected_image(points, colors, r, t, k, dist_coeff, width, height): | |
xy, cm = project_points(points, colors, r, t, k, dist_coeff, width, height) | |
image = np.zeros((height, width, 3), dtype=colors.dtype) | |
image[xy[:, 1], xy[:, 0]] = cm | |
return image | |
def rotate(arr, anglex, anglez): | |
return np.array([ # rx | |
[1, 0, 0], | |
[0, np.cos(anglex), -np.sin(anglex)], | |
[0, np.sin(anglex), np.cos(anglex)] | |
]).dot(np.array([ # rz | |
[np.cos(anglez), 0, np.sin(anglez)], | |
[0, 1, 0], | |
[-np.sin(anglez), 0, np.cos(anglez)] | |
])).dot(arr) | |
def run(left_image, right_image, focal_length, tx): | |
image = right_image | |
height, width, _ = image.shape | |
disp = calc_disparity(left_image, right_image) | |
q = np.array([ | |
[1, 0, 0, -width/2], | |
[0, 1, 0, -height/2], | |
[0, 0, 0, focal_length], | |
[0, 0, -1/tx, 0] | |
]) | |
points, colors = calc_point_cloud(image, disp, q) | |
r = np.eye(3) | |
t = np.array([0, 0, -100.0]) | |
k = np.array([ | |
[focal_length, 0, width/2], | |
[0, focal_length, height/2], | |
[0, 0, 1] | |
]) | |
dist_coeff = np.zeros((4, 1)) | |
def view(r, t): | |
cv2.imshow('projected', calc_projected_image( | |
points, colors, r, t, k, dist_coeff, width, height | |
)) | |
view(r, t) | |
angles = { # x, z | |
'w': (-np.pi/6, 0), | |
's': (np.pi/6, 0), | |
'a': (0, np.pi/6), | |
'd': (0, -np.pi/6) | |
} | |
while 1: | |
key = cv2.waitKey(0) | |
if key not in range(256): | |
continue | |
ch = chr(key) | |
if ch in angles: | |
ax, az = angles[ch] | |
r = rotate(r, -ax, -az) | |
t = rotate(t, ax, az) | |
view(r, t) | |
elif ch == '\x1b': # esc | |
cv2.destroyAllWindows() | |
break | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('left_image') | |
parser.add_argument('right_image') | |
parser.add_argument('focal_length', type=float) | |
parser.add_argument('distance_between_cameras', type=float) | |
args = parser.parse_args() | |
left_image = cv2.imread(args.left_image) | |
right_image = cv2.imread(args.right_image) | |
f = args.focal_length | |
tx = args.distance_between_cameras | |
run(left_image, right_image, f, tx) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Can anybody post some sample results