Last active
September 18, 2024 01:54
-
-
Save lapp0/d28931ebc9f59838800faa7c73e3a0dc to your computer and use it in GitHub Desktop.
LLM Memory Requirement Calculator Script (Full Finetune and Inference)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import urllib.request | |
import json | |
def bits_to_gb(bits): | |
return bits / (8 * 1024**3) | |
def calculate_train_vram_requirements( | |
batch_size, seq_len, params, precision, num_layers, num_attn_heads, hidden_size, **ignored | |
): | |
""" | |
full train, not lora | |
source: https://arxiv.org/pdf/2205.05198.pdf (section 4.1) | |
credit: https://medium.com/@siddheshgunjal82/understanding-vram-requirements-to-train-inference-with-large-language-models-llms-a3edd0f09d9f | |
""" | |
# Calculate activations using the provided formula | |
activations = ( | |
num_layers * (5/2) * num_attn_heads * batch_size * seq_len**2 | |
+ 17 * batch_size * hidden_size * seq_len | |
) | |
# Calculate VRAM using the provided formula | |
vram_bits = precision * (activations + params) | |
# Convert VRAM from bits to Gigabytes | |
return bits_to_gb(vram_bits) | |
def calculate_inference_vram_requirements( | |
batch_size, seq_len, params, precision, num_layers, hidden_size, | |
num_attn_heads, num_kv_heads, gqa=True | |
): | |
""" | |
source 1: https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/ | |
source 2: https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices | |
- same as source 1, but with the introduction a factor (n_heads / n_kv_heads) specific to GQA | |
- "GQA helps with keeping the KV cache size down by sharing Keys/Values" | |
- defaulting to calculated models using GQA since Mistral, Yi, and Llama 2 use it | |
""" | |
kv_cache = batch_size * seq_len * 2 * num_layers * hidden_size | |
if gqa: | |
kv_cache *= num_kv_heads / num_attn_heads | |
vram_bits = precision * (kv_cache + params) | |
return bits_to_gb(vram_bits) | |
def get_model_params(model_uri): | |
url = f"https://huggingface.co/{model_uri}/raw/main/config.json" | |
with urllib.request.urlopen(url) as response: | |
return json.loads(response.read()) | |
def print_table(model_uri, bparams, batch_size=1, precisions=None, mode="infer"): | |
precisions = precisions or [4, 6, 8, 16] | |
model_params = get_model_params(model_uri) | |
seq_lens = ( | |
[2**i for i in range(8, 20) if 2**i< model_params["max_position_embeddings"]] | |
+ [model_params["max_position_embeddings"]] | |
) | |
calc_params = { | |
"num_layers": model_params["num_hidden_layers"], | |
"hidden_size": model_params["hidden_size"], | |
"num_attn_heads": model_params["num_attention_heads"], | |
"num_kv_heads": model_params["num_key_value_heads"], | |
} | |
if mode == "infer": | |
vram_calculator = calculate_inference_vram_requirements | |
elif mode == "train": | |
vram_calculator = calculate_train_vram_requirements | |
elif mode == "train_lora": | |
raise NotImplemented | |
else: | |
raise ValueError | |
column_width = 10 | |
# Print the header of the table with precisions | |
header = f"{'SL / BP':>{column_width}}" + "".join([f" | {p:^10}" for p in precisions]) | |
results = [ | |
f"Model: {model_uri}", | |
f"Params: {bparams}B", | |
f"Batch Size: {batch_size}", | |
f"Mode: {mode}", | |
"", | |
"Sequence Length vs Bit Precision - Memory Requirements" | |
] | |
results.append(header) | |
results.append("-" * len(header)) | |
# Iterate over each seq_len and calculate VRAM for each precision | |
for seq_len in seq_lens: | |
seq_len_label = f"{seq_len:>{column_width}}" | |
if seq_len == max(seq_lens): | |
seq_len_label = "*" + seq_len_label[1:] | |
row_data = [seq_len_label] | |
for precision in precisions: | |
vram_required = vram_calculator( | |
batch_size=batch_size, | |
seq_len=seq_len, | |
precision=precision, | |
params=bparams * 1e9, | |
**calc_params # Unpack additional parameters if provided | |
) | |
row_data.append(f"{vram_required:8.1f}GB") # Format with 1 decimal point | |
# Print each row of the table | |
results.append(" | ".join(row_data)) | |
results += ["", "* Model Max Context Size"] | |
results += ["", "Code: https://gist.github.com/lapp0/d28931ebc9f59838800faa7c73e3a0dc/edit"] | |
print(" " + "\n ".join(results)) | |
print_table("01-ai/Yi-34B-200K", bparams=34.395, mode="infer") | |
""" | |
Model: 01-ai/Yi-34B-200K | |
Params: 34.395B | |
Batch Size: 1 | |
Mode: infer | |
Sequence Length vs Bit Precision - Memory Requirements | |
SL / BP | 4 | 6 | 8 | 16 | |
-------------------------------------------------------------- | |
256 | 16.0GB | 24.0GB | 32.1GB | 64.1GB | |
512 | 16.0GB | 24.1GB | 32.1GB | 64.2GB | |
1024 | 16.1GB | 24.1GB | 32.2GB | 64.3GB | |
2048 | 16.1GB | 24.2GB | 32.3GB | 64.5GB | |
4096 | 16.3GB | 24.4GB | 32.5GB | 65.0GB | |
8192 | 16.5GB | 24.7GB | 33.0GB | 65.9GB | |
16384 | 17.0GB | 25.4GB | 33.9GB | 67.8GB | |
32768 | 17.9GB | 26.8GB | 35.8GB | 71.6GB | |
65536 | 19.8GB | 29.6GB | 39.5GB | 79.1GB | |
131072 | 23.5GB | 35.3GB | 47.0GB | 94.1GB | |
* 200000 | 27.5GB | 41.2GB | 54.9GB | 109.8GB | |
* Model Max Context Size | |
Code: https://gist.github.com/lapp0/d28931ebc9f59838800faa7c73e3a0dc/edit | |
""" | |
print_table("01-ai/Yi-34B-200K", bparams=34.395, mode="train") | |
""" | |
Model: 01-ai/Yi-34B-200K | |
Params: 34.395B | |
Batch Size: 1 | |
Mode: train | |
Sequence Length vs Bit Precision - Memory Requirements | |
SL / BP | 4 | 6 | 8 | 16 | |
-------------------------------------------------------------- | |
256 | 16.3GB | 24.4GB | 32.6GB | 65.1GB | |
512 | 17.1GB | 25.6GB | 34.1GB | 68.3GB | |
1024 | 20.2GB | 30.3GB | 40.4GB | 80.7GB | |
2048 | 32.5GB | 48.8GB | 65.1GB | 130.2GB | |
4096 | 81.9GB | 122.8GB | 163.7GB | 327.5GB | |
8192 | 279.0GB | 418.5GB | 558.0GB | 1115.9GB | |
16384 | 1066.9GB | 1600.4GB | 2133.9GB | 4267.8GB | |
32768 | 4217.9GB | 6326.8GB | 8435.8GB | 16871.5GB | |
65536 | 16819.7GB | 25229.6GB | 33639.5GB | 67278.9GB | |
131072 | 67223.5GB | 100835.2GB | 134446.9GB | 268893.8GB | |
* 200000 | 156489.6GB | 234734.3GB | 312979.1GB | 625958.2GB | |
* Model Max Context Size | |
Code: https://gist.github.com/lapp0/d28931ebc9f59838800faa7c73e3a0dc/edit | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment