Skip to content

Instantly share code, notes, and snippets.

View larkintuckerllc's full-sized avatar

John Tucker larkintuckerllc

View GitHub Profile
from langchain.agents.middleware import dynamic_prompt
from langchain.agents import create_agent
from langchain_chroma import Chroma
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
def main():
embeddings = OpenAIEmbeddings(
model="Qwen/Qwen3-Embedding-0.6B",
openai_api_base="http://localhost:8000/v1",
from langchain.agents.middleware import dynamic_prompt
from langchain_anthropic import ChatAnthropic
from langchain.agents import create_agent
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
def main():
embeddings = OpenAIEmbeddings(
model="Qwen/Qwen3-Embedding-0.6B",
from langchain_anthropic import ChatAnthropic
from langchain.agents import create_agent
from langchain.tools import tool
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
def main():
embeddings = OpenAIEmbeddings(
model="Qwen/Qwen3-Embedding-0.6B",
from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
def main():
loader = DirectoryLoader("./data/", glob="**/*.txt", loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
from langchain.agents.middleware import dynamic_prompt
from langchain_anthropic import ChatAnthropic
from langchain.agents import create_agent
from langchain_chroma import Chroma
from langchain_ollama import OllamaEmbeddings
def main():
embeddings = OllamaEmbeddings(model="llama3")
vector_store = Chroma(
from langchain_anthropic import ChatAnthropic
from langchain.agents import create_agent
from langchain.tools import tool
from langchain_chroma import Chroma
from langchain_ollama import OllamaEmbeddings
def main():
embeddings = OllamaEmbeddings(model="llama3")
vector_store = Chroma(
from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain_chroma import Chroma
from langchain_ollama import OllamaEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
def main():
loader = DirectoryLoader("./data/", glob="**/*.txt", loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
def main():
loader = DirectoryLoader("./data/", glob="**/*.txt", loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
from langchain_community.document_loaders import DirectoryLoader, TextLoader
def main():
loader = DirectoryLoader("./data/", glob="**/*.txt", loader_cls=TextLoader)
documents = loader.load()
print(f"Total characters: {len(documents[0].page_content)}")
print(documents[0].page_content[:500])
if __name__ == "__main__":
from langchain_anthropic import ChatAnthropic
from langchain.agents import create_agent
from langchain.tools import tool
@tool
def get_weather(city: str) -> str:
"""Get weather for a given city.
Args: