Created
February 6, 2017 05:56
-
-
Save larrytheliquid/6a11495b8a1f568eb89ff0d56f450643 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Data.Unit | |
open import Data.Bool | |
open import Data.Nat | |
open import Data.Product | |
module _ where | |
---------------------------------------------------------------------- | |
data Desc (I : Set) : Set₁ where | |
`ι : I → Desc I | |
`δ : I → Desc I → Desc I | |
`σ : (A : Set) (D : A → Desc I) → Desc I | |
⟦_⟧ : {I : Set} (D : Desc I) (X : I → Set) → Set | |
⟦ `ι i ⟧ X = ⊤ | |
⟦ `δ i D ⟧ X = X i × ⟦ D ⟧ X | |
⟦ `σ A D ⟧ X = Σ A λ a → ⟦ D a ⟧ X | |
idx : {I : Set} (D : Desc I) (X : I → Set) (xs : ⟦ D ⟧ X) → I | |
idx (`ι i) X u = i | |
idx (`δ i D) X (x , xs) = idx D X xs | |
idx (`σ A D) X (a , xs) = idx (D a) X xs | |
data μ {I : Set} (D : Desc I) : I → Set where | |
init : (xs : ⟦ D ⟧ (μ D)) → μ D (idx D (μ D) xs) | |
---------------------------------------------------------------------- | |
module PropVec where | |
VecD : Set → Desc ℕ | |
VecD A = `σ Bool λ b → if b | |
then `ι zero | |
else `σ ℕ λ n → `σ A λ _ → `δ n (`ι (suc n)) | |
Vec : Set → ℕ → Set | |
Vec A n = μ (VecD A) n | |
nil : (A : Set) → Vec A zero | |
nil A = init (true , tt) | |
cons : (A : Set) (n : ℕ) → A → Vec A n → Vec A (suc n) | |
cons A n a xs = init (false , n , a , xs , tt) | |
-- idx | |
-- (if proj₁ xs then `ι zero else | |
-- `σ ℕ (λ n → `σ A (λ _ → `δ n (`ι (suc n))))) | |
-- (μ (VecD A)) (proj₂ xs) | |
-- != suc n of type ℕ | |
-- when checking that the pattern init (false , n , a , ys , tt) has | |
-- type μ (VecD A) (suc n) | |
tail : {A : Set} {n : ℕ} → Vec A (suc n) → Vec A n | |
tail (init (false , n , a , ys , tt)) = ys | |
---------------------------------------------------------------------- |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Data.Unit | |
open import Data.Bool | |
open import Data.Nat | |
open import Data.Product | |
open import Relation.Binary.PropositionalEquality | |
module _ where | |
---------------------------------------------------------------------- | |
data Desc (I : Set) : Set₁ where | |
`ι : I → Desc I | |
`δ : I → Desc I → Desc I | |
`σ : (A : Set) (D : A → Desc I) → Desc I | |
⟦_⟧ : {I : Set} (D : Desc I) (X : I → Set) → Set | |
⟦ `ι i ⟧ X = ⊤ | |
⟦ `δ i D ⟧ X = X i × ⟦ D ⟧ X | |
⟦ `σ A D ⟧ X = Σ A λ a → ⟦ D a ⟧ X | |
idx : {I : Set} (D : Desc I) (X : I → Set) (xs : ⟦ D ⟧ X) → I | |
idx (`ι i) X u = i | |
idx (`δ i D) X (x , xs) = idx D X xs | |
idx (`σ A D) X (a , xs) = idx (D a) X xs | |
data μ {I : Set} (D : Desc I) (i : I) : Set where | |
init : (xs : ⟦ D ⟧ (μ D)) (q : idx D (μ D) xs ≡ i) → μ D i | |
---------------------------------------------------------------------- | |
module PropVec where | |
VecD : Set → Desc ℕ | |
VecD A = `σ Bool λ b → if b | |
then `ι zero | |
else `σ ℕ λ n → `σ A λ _ → `δ n (`ι (suc n)) | |
Vec : Set → ℕ → Set | |
Vec A n = μ (VecD A) n | |
nil : (A : Set) → Vec A zero | |
nil A = init (true , tt) refl | |
cons : (A : Set) (n : ℕ) → A → Vec A n → Vec A (suc n) | |
cons A n a xs = init (false , n , a , xs , tt) refl | |
tail : {A : Set} {n : ℕ} → Vec A (suc n) → Vec A n | |
tail (init (true , xs) ()) | |
tail (init (false , n , a , xs , tt) refl) = xs | |
---------------------------------------------------------------------- |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment