Last active
August 22, 2025 20:12
-
-
Save larsoner/0198b19bf1fe340deab361e8719030e6 to your computer and use it in GitHub Desktop.
See how we can speed up dipole fitting
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import mne | |
| import time | |
| data_path = mne.datasets.sample.data_path() | |
| subjects_dir = data_path / 'subjects' | |
| n_dips = 10 | |
| radius = 0.05 | |
| rr = np.random.default_rng(0).normal(size=(n_dips, 3)) | |
| rr /= np.linalg.norm(rr, axis=1)[:, np.newaxis] / radius * 0.9 | |
| nn = np.cross([1, 0, 0], rr) | |
| nn /= np.linalg.norm(nn, axis=1)[:, np.newaxis] | |
| assert nn.shape == rr.shape | |
| bem = mne.read_bem_solution(data_path / "subjects" / "sample" / "bem" / "sample-5120-5120-5120-bem-sol.fif") | |
| assert bem["surfs"][-1]["id"] == mne.io.constants.FIFF.FIFFV_BEM_SURF_ID_BRAIN | |
| rr += bem["surfs"][-1]["rr"].mean(axis=0) # center the points around the BEM center | |
| evoked = mne.read_evokeds(data_path / "MEG" / "sample" / "sample_audvis-ave.fif", condition=0) | |
| evoked.crop(tmin=0.1, tmax=0.1) | |
| # %% | |
| # _CheckInside | |
| t0 = time.time() | |
| ci = mne.surface._CheckInside(bem["surfs"][-1]) | |
| assert all(ci(rr)) | |
| print(f"Single _CheckInside: {time.time() - t0:0.1f}s") | |
| t0 = time.time() | |
| for r in rr: | |
| ci = mne.surface._CheckInside(bem["surfs"][-1]) | |
| assert all(ci(r[np.newaxis])) | |
| print(f"Loop _CheckInside: {time.time() - t0:0.1}s") | |
| print() | |
| # %% | |
| # make_forward_solution | |
| trans = mne.read_trans(data_path / "MEG" / "sample" / "sample_audvis_raw-trans.fif") | |
| t0 = time.time() | |
| src = mne.setup_volume_source_space("sample", pos=dict(rr=rr, nn=nn)) | |
| fwd = mne.make_forward_solution(evoked.info, trans, src, bem) | |
| print(f"Single make_forward_solution: {time.time() - t0:0.1f}s") | |
| t0 = time.time() | |
| fwds = list() | |
| for ri in range(n_dips): | |
| this_src = mne.setup_volume_source_space("sample", pos=dict(rr=rr[[ri]], nn=nn[[ri]])) | |
| fwds.append(mne.make_forward_solution(evoked.info, trans, this_src, bem)) | |
| print(f"Loop make_forward_solution: {time.time() - t0:0.1f}s") | |
| print() | |
| check = np.concatenate([f["sol"]["data"] for f in fwds], axis=1) | |
| np.testing.assert_allclose(check, fwd["sol"]["data"]) | |
| # %% | |
| # make_forward_dipole | |
| t0 = time.time() | |
| mri_head_t = mne.transforms.invert_transform(trans) | |
| rr_head = mne.transforms.apply_trans(mri_head_t, rr) | |
| nn_head = mne.transforms.apply_trans(mri_head_t, nn, move=False) | |
| assert mri_head_t["from"] == mne.io.constants.FIFF.FIFFV_COORD_MRI | |
| dip = mne.Dipole(np.arange(n_dips), rr_head, np.ones(n_dips), nn_head, np.ones(n_dips)) | |
| fwd_dip, _ = mne.make_forward_dipole(dip, bem, evoked.info, trans) | |
| print(f"Single make_forward_dipole: {time.time() - t0:0.1f}s") | |
| fwd_fixed = mne.convert_forward_solution(fwd, force_fixed=True) | |
| np.testing.assert_allclose(fwd_dip["source_rr"], fwd_fixed["source_rr"]) | |
| np.testing.assert_allclose(fwd_dip["source_nn"], fwd_fixed["source_nn"]) | |
| np.testing.assert_allclose(fwd_dip["sol"]["data"], fwd_fixed["sol"]["data"], rtol=1e-6) | |
| t0 = time.time() | |
| fwd_dips = list() | |
| for ri in range(n_dips): | |
| this_dip = mne.Dipole(np.arange(ri, ri + 1), rr_head[[ri]], np.ones(1), nn_head[[ri]], np.ones(1)) | |
| fwd_dips.append(mne.make_forward_dipole(this_dip, bem, evoked.info, trans)[0]) | |
| print(f"Loop make_forward_dipole: {time.time() - t0:0.1f}s") | |
| check = np.concatenate([f["sol"]["data"] for f in fwd_dips], axis=1) | |
| np.testing.assert_allclose(check, fwd_fixed["sol"]["data"], rtol=1e-6) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment