Created
November 2, 2018 02:39
-
-
Save larsoner/170f88071d2ea594a350fc74604aae26 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Do regularization in lower-dimensional subspace. | |
""" | |
import numpy as np | |
from scipy import linalg | |
from sklearn.covariance import OAS, EmpiricalCovariance, LedoitWolf | |
rng = np.random.RandomState(0) | |
n_ch = 60 | |
n_times = 5000 | |
n_train = 200 | |
n_comp = 40 | |
u = linalg.svd(rng.randn(60, n_comp))[0][:, :n_comp] | |
cov = np.dot(u, u.T) | |
data = rng.multivariate_normal(np.zeros(n_ch), cov, 1000).T | |
u = linalg.svd(data)[0][:, :n_comp] | |
proj = np.dot(u.T, data) | |
emp = EmpiricalCovariance() | |
emp.fit(data.T[:n_train]) | |
print(-emp.score(data.T[n_train:]), np.linalg.norm(cov - emp.covariance_)) | |
oas = OAS() | |
oas.fit(data.T[:n_train]) | |
print(-oas.score(data.T[n_train:]), np.linalg.norm(cov - oas.covariance_)) | |
lw = LedoitWolf() | |
lw.fit(data.T[:n_train]) | |
print(-lw.score(data.T[n_train:]), np.linalg.norm(cov - lw.covariance_)) | |
emp = EmpiricalCovariance() | |
emp.fit(proj.T[:n_train]) | |
emp_cov = np.dot(np.dot(u, emp.covariance_), u.T) | |
print(-emp.score(proj.T[n_train:]), np.linalg.norm(cov - emp_cov)) | |
oas = OAS() | |
oas.fit(proj.T[:n_train]) | |
oas_cov = np.dot(np.dot(u, oas.covariance_), u.T) | |
print(-oas.score(proj.T[n_train:]), np.linalg.norm(cov - oas_cov)) | |
lw = LedoitWolf() | |
lw.fit(proj.T[:n_train]) | |
lw_cov = np.dot(np.dot(u, lw.covariance_), u.T) | |
print(-lw.score(proj.T[n_train:]), np.linalg.norm(cov - lw_cov)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment