Created
February 22, 2021 14:44
-
-
Save larsoner/3e44efbabb61de104169972bf3605366 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Following https://m-clark.github.io/docs/mixedModels/anovamixed.html | |
import numpy as np | |
from scipy import stats | |
from pandas import DataFrame | |
import statsmodels.api as sm | |
from statsmodels.stats import anova | |
import statsmodels.formula.api as smf | |
import pingouin | |
treat = ['treat'] * 5 + ['control'] * 5 | |
pre = np.array([20, 10, 60, 20, 10, 50, 10, 40, 20, 10]) | |
post = np.array([70, 50, 90, 60, 50, 20, 10, 30, 50, 10]) | |
change = post - pre | |
df = DataFrame(dict(id=np.arange(1, len(pre) + 1), treat=treat, pre=pre, post=post)) | |
print(df.head()) | |
dflong = \ | |
df.melt( | |
['id', 'treat'], var_name='time', value_name='score' | |
).sort_values( | |
['id', 'time'], ascending=[True, False] | |
).reset_index(drop=True) | |
print(dflong.head()) | |
############################################################################### | |
# Post only | |
print('\nPost only') | |
# | |
# ttest | |
# | |
post_treat = df.query('treat == "treat"')['post'] | |
post_control = df.query('treat == "control"')['post'] | |
t, p = stats.ttest_ind(post_treat, post_control) | |
print(f'ttest: t²={t ** 2}\n p={p}') | |
# | |
# ANOVA | |
# | |
f, p = stats.f_oneway(post_treat, post_control) | |
print(f'ANOVA: f={f}\n p={p}') | |
lm = smf.ols('post ~ treat', data=df).fit() | |
table = sm.stats.anova_lm(lm, typ=2) | |
print(f'ANOVA: F={table.F[0]}\n p={table["PR(>F)"][0]}') | |
table = pingouin.anova(df, 'post', between='treat') | |
print(f'ANOVA: F={table.F[0]}\n p={table["p-unc"][0]}') | |
############################################################################### | |
# Pre-post | |
print('\nPre-post') | |
is_treat = np.array(treat) == 'treat' | |
change_treat = post[is_treat] - pre[is_treat] | |
change_control = post[~is_treat] - pre[~is_treat] | |
t, p = stats.ttest_ind(change_treat, change_control) | |
print(f'ttest: t²={t ** 2}\n p={p}') | |
lm = smf.ols('post ~ pre + treat', data=df).fit() | |
table = sm.stats.anova_lm(lm, typ=2) | |
print(f'ANOVA: F={table.F[0]}\n p={table["PR(>F)"][0]}') | |
table = pingouin.ancova(df, 'post', between='treat', covar='pre') | |
print(f'ANOVA: F={table.F[0]}\n p={table["p-unc"][0]}') | |
# "a t-test on the change score is the interaction term from the repeated | |
# measures ANOVA on the same data" | |
table = pingouin.mixed_anova(dflong, 'score', within='time', subject='id', | |
between='treat', correction=False) | |
print(f'ANOVA: F={table.F[2]}\n p={table["p-unc"][2]}') | |
lm = smf.ols('score ~ treat*time + (1|id)', dflong).fit() | |
table = sm.stats.anova_lm(lm, typ=2) | |
print(f'ANOVA: F={table.F[2]}\n p={table["PR(>F)"][2]}') | |
md = smf.mixedlm('score ~ treat*time', dflong, groups=dflong["id"]).fit() | |
print(f'MIXED: F={table.F[2]}\n p={table["PR(>F)"][2]}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment