Created
October 21, 2021 19:08
-
-
Save larsoner/5be1ae1e7c2dcb8cf479d599d287bd4e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Hotelling T2 example. | |
Following the notation in | |
https://en.wikipedia.org/wiki/Hotelling%27s_T-squared_distribution#Two-sample_statistic | |
""" | |
import numpy as np | |
from scipy import stats | |
import matplotlib.pyplot as plt | |
rng = np.random.RandomState(42) | |
n_x = 10 | |
n_y = 8 | |
p = 3 | |
assert p >= 2 | |
x, y = rng.rand(n_x, p) - 0.5, rng.rand(n_y, p) - 0.5 | |
x[:, :2] += [0.2, 0.1] # toward upper right | |
y[:, :2] += [-0.1, -0.15] # toward lower left | |
# Just plot the XY plane, where the difference is (could make it different in | |
# 3D but 2D is easier to visualize) | |
fig, ax = plt.subplots(figsize=(4, 4)) | |
for data, color in ((x, 'tab:blue'), (y, 'tab:orange')): | |
x_ = y_ = np.zeros(len(data)) | |
u, v = data[:, :2].T | |
kwargs = dict(units='xy', angles='xy', scale_units='xy', scale=1.) | |
ax.quiver(x_, y_, u, v, color=color, lw=1, alpha=0.2, **kwargs) | |
ax.quiver(0, 0, np.mean(u), np.mean(v), color=color, lw=2) | |
ax.set(xlim=[-1, 1], ylim=[-1, 1]) | |
# Separate t-tests | |
for ci, coord in enumerate('XYZ'): | |
t, p = stats.ttest_ind(x[:, ci], y[:, ci]) | |
print(f'{coord} p={p:0.4f}') | |
# Hotelling T2 | |
# Unbiased pooled covariance matrix | |
sigma_x, sigma_y = np.cov(x.T, ddof=1), np.cov(y.T, ddof=1) | |
sigma = ((n_x - 1) * sigma_x + (n_y - 1) * sigma_y) / (n_x + n_y - 2) | |
delta = np.mean(x, axis=0) - np.mean(y, axis=0) | |
t2 = (n_x * n_y) / (n_x + n_y) * (delta @ np.linalg.inv(sigma) @ delta) | |
# A scaled version of this is F distributed | |
df1, df2 = p, n_x + n_y - 1 - p | |
F = t2 * df2 / ((n_x + n_y + 2) * p) | |
p = 1 - stats.f.cdf(F, df1, df2) | |
print(f'\nH p={p:0.4f}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment