Last active
August 29, 2015 14:15
-
-
Save larsoner/83f6184d9a7123cf9441 to your computer and use it in GitHub Desktop.
cov test
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Test covariance generation | |
""" | |
from __future__ import print_function | |
from os import path as op | |
import warnings | |
import numpy as np | |
import mne | |
use_sample = False | |
if use_sample: | |
data_dir = mne.datasets.sample.data_path() | |
else: | |
data_dir = op.join('.') | |
subjects = ['test'] | |
tmin, tmax = -0.2, 0 | |
data_types = ['real', 'noise', 'rank-deficient'] | |
n_epochs_use = [10, 20, 40] # , 40, 80] | |
lowpasses = [None] # XXX fix 2, 10, 50, 250, | |
rng = np.random.RandomState(0) | |
scalings = dict(grad=1e13, mag=1e15, eeg=1e6) | |
methods = None | |
logliks = np.empty((len(subjects), len(data_types), len(lowpasses), | |
len(n_epochs_use), 4)) | |
for si, subj in enumerate(subjects): | |
print('Subject #%s/%s' % (si + 1, len(subjects))) | |
for di, data_type in enumerate(data_types): | |
print(' Data type: %s' % data_type) | |
if not use_sample: | |
fname_raw = op.join(data_dir, subj + '_raw.fif') | |
else: | |
fname_raw = op.join(data_dir, 'MEG', 'sample', 'sample_audvis_raw.fif') | |
with warnings.catch_warnings(record=True): | |
raw = mne.io.Raw(fname_raw, allow_maxshield=True) | |
raw.crop(0, max(n_epochs_use) * 0.2 + 1) | |
raw.preload_data() | |
if data_type in ('noise', 'rank-deficient'): | |
data = rng.randn(len(raw.ch_names), raw.n_times) | |
for meg, eeg, key in zip(['grad', 'mag', 'false'], | |
[False, False, True], | |
['grad', 'mag', 'eeg']): | |
picks = mne.pick_types(raw.info, meg=meg, eeg=eeg, exclude=[]) | |
data[picks] /= scalings[key] | |
if data_type == 'rank-deficient' and not eeg: | |
data[picks[-len(picks)//2:]] = data[picks[:len(picks)//2]] | |
raw = mne.io.RawArray(data, raw.info) | |
raw.info['projs'] = [] | |
else: | |
assert data_type == 'real' | |
events = mne.make_fixed_length_events(raw, 1, duration=tmax-tmin) | |
for li, lowpass in enumerate(lowpasses): | |
raw_lp = raw.copy() | |
if lowpass is not None: | |
print(' Low-passing at %s Hz' % lowpass) | |
raw_lp.filter(None, lowpass, filter_length='2s', n_jobs='cuda') | |
else: | |
print(' Not filtering') | |
epochs_all = mne.Epochs(raw_lp, events, 1, tmin, tmax, | |
preload=True) | |
for ni, n_epochs in enumerate(n_epochs_use): | |
print(' Using %s epochs... ' % n_epochs) | |
cov = mne.compute_covariance(epochs_all[:n_epochs], | |
method='auto', | |
return_estimators=True) | |
if methods is None: | |
methods = np.sort([c['method'] for c in cov]) | |
these_methods = np.array([c['method'] for c in cov]) | |
order = np.argsort(these_methods) | |
assert np.array_equal(methods, these_methods[order]) | |
logliks[si, di, li, ni, order] = [c['loglik'] for c in cov] | |
assert lowpasses[-1] is None | |
lowpasses[-1] = int(round(raw.info['sfreq'] / 2)) | |
n_samp_eff = ((tmax - tmin) * raw.info['sfreq'] * np.array(n_epochs_use) | |
* np.array(lowpasses)[:, np.newaxis] / float(lowpasses[-1])) | |
assert n_samp_eff.shape == (len(lowpasses), len(n_epochs_use)) | |
for di, data_type in enumerate(data_types): | |
these_liks = logliks[:, di, ...] | |
print('inf: %s%% for %s:' % (100*np.isinf(these_liks).mean(), data_type)) | |
for mi, method in enumerate(methods): | |
print(' (%s%% for %s)' % (100*np.isinf(these_liks[..., mi]).mean(), | |
method)) | |
# plot the result | |
import matplotlib.pyplot as plt | |
plt.ion() | |
fig, axs = plt.subplots(1, len(data_types)) | |
for ai, (ax, title) in enumerate(zip(axs, data_types)): | |
data = np.mean(logliks[:, ai, -1], axis=0) | |
lines = ax.plot(data.T) | |
ax.set_title(title) | |
plt.legend(lines, methods) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment