Created
December 2, 2015 02:58
-
-
Save larsoner/fdffd86d0a952bdf14f6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# see: | |
# http://eeweb.poly.edu/iselesni/lecture_notes/least_squares/ | |
# LeastSquares_SPdemos/deconvolution/html/deconv_demo.html | |
import numpy as np | |
from scipy import linalg, sparse | |
import matplotlib.pyplot as plt | |
from pyeparse.utils import pupil_kernel | |
plt.ion() | |
fs = 10. | |
rng = np.random.RandomState(0) | |
data_scale = 1e2 | |
# """ | |
dur = 10. | |
h = pupil_kernel(fs) | |
N = int(fs * dur) | |
h_t = np.arange(len(h)) / fs | |
x = np.abs(rng.randn(N)) | |
x *= np.hanning(N) | |
x *= data_scale | |
""" | |
N = 300 | |
n = np.arange(N, dtype=float) | |
w = 5. | |
n1 = 70. | |
n2 = 130. | |
x = 2.1 * np.exp(-0.5*((n - n1) / w) ** 2) | |
x -= 0.5 * np.exp(-0.5 * ((n - n2) / w) ** 2) * (n2 - n) | |
x *= data_scale | |
h = n * (0.9 ** n) * np.sin(0.2 * np.pi * n) | |
""" | |
t = np.arange(N) / fs | |
y = np.convolve(x, h)[:len(x)] | |
fig, axs = plt.subplots(2, 1) | |
axs[0].plot(t, x, 'k') | |
axs[1].plot(t, y, 'k') | |
# construct the convolution matrix | |
H = np.zeros((N, N)) | |
for ii in range(N): | |
n_samp = min(len(h), N - ii) | |
H[ii:ii + n_samp, ii] = h[:n_samp] | |
np.testing.assert_allclose(np.dot(H, x), y) | |
y += 0.2 * rng.randn(N) | |
# diagonal loading | |
lambda_0 = 0.1 | |
x_diag = linalg.solve(np.dot(H.T, H) + lambda_0 * np.eye(N), np.dot(H.T, y)) | |
axs[0].plot(t, x_diag, 'r') | |
# derivative regularization | |
e = np.ones(N) | |
D = sparse.spdiags([e, -2*e, e], np.arange(3), N - 2, N) | |
print(D.shape) | |
lambda_1 = 2. | |
x_deriv = linalg.solve(np.dot(H.T, H) + lambda_1 * D.T.dot(D), np.dot(H.T, y)) | |
axs[0].plot(t, x_deriv, 'g') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment