Last active
April 17, 2019 01:10
-
-
Save lazear/2bc372aeb8a989eb1d93912ceff34351 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass{article} | |
\title{Reference sheet for ``Introduction to Logic''} | |
\date{2019-04-15} | |
\author{Michael Lazear} | |
\pagestyle{headings} | |
\usepackage{amsmath} | |
\begin{document} | |
\pagenumbering{gobble} | |
\maketitle | |
\newpage | |
\pagenumbering{arabic} | |
\tableofcontents | |
\newpage | |
\section{Introduction} | |
This document is a reference sheet for the book ``Introduction to Logic'' by Harry Gensler and This document \footnote{http://www.math.uvic.ca/faculty/gmacgill/guide/Logic.pdf} | |
\newpage | |
\section{Definitions and terms} | |
Definitions from an ``Introduction to Logic'' | |
\medskip | |
An \textbf{argument} is a set of statements consisting of premises and a conclusion. An argument is \textbf{valid} if it is contradictory to have the premises all true and the conclusion false. -- $(p \wedge p_1 \wedge p_2 \wedge \ldots p_n) \rightarrow q$. | |
An argument is \textbf{sound} if it is valid and all of the premises are true. | |
\medskip | |
\textbf{wff}, a well-formed formula | |
\medskip | |
A statement that is true in all cases is a \textbf{tautology} -- $(p \lor \neg p)$ | |
\medskip | |
A \textbf{contradiction} is a statement that is false in all cases -- $(p \wedge \neg p)$ | |
\medskip | |
\textbf{law of the excluded middle} states that every statement is true or false. | |
\newpage | |
\section{Propositional Logic} | |
\subsection{Compound statements} | |
The \textbf{conjuction of $P$ and $Q$} (e.g. \textbf{$P$ and $Q$}) $P \wedge Q$, states that both $P$ and $Q$ are true. | |
\begin{tabular}{cc|c} | |
P & Q & $(P \wedge Q)$ \\ | |
\hline | |
0 & 0 & 0 \\ | |
0 & 1 & 0 \\ | |
1 & 0 & 0 \\ | |
1 & 1 & 1 \\ | |
\end{tabular} | |
\bigskip | |
The \textbf{disjunction of $p$ and $q$} (e.g. \textbf{$p$ or $q$}) $p \lor q$, states that either $p$ is true, or $q$ is true, or both are true (at least one part is true). | |
\begin{tabular}{cc|c} | |
P & Q & $(P \lor Q)$ \\ | |
\hline | |
0 & 0 & 0 \\ | |
0 & 1 & 1 \\ | |
1 & 0 & 1 \\ | |
1 & 1 & 1 \\ | |
\end{tabular} | |
\bigskip | |
The \textbf{conditional $p \rightarrow q$} (e.g. \textbf{if $p$ then $q$}), states that $q$ is not false if $p$ is true. | |
\begin{tabular}{cc|c} | |
P & Q & $(P \rightarrow Q)$ \\ | |
\hline | |
0 & 0 & 1 \\ | |
0 & 1 & 1 \\ | |
1 & 0 & 0 \\ | |
1 & 1 & 1 \\ | |
\end{tabular} | |
\bigskip | |
The \textbf{biconditional $p \leftrightarrow q$} (e.g. \textbf{$p$ if and only if $q$}), states that $p$ and $q$ have the same truth value. | |
\begin{tabular}{cc|c} | |
P & Q & $(P \leftrightarrow Q)$ \\ | |
\hline | |
0 & 0 & 1 \\ | |
0 & 1 & 0 \\ | |
1 & 0 & 0 \\ | |
1 & 1 & 1 \\ | |
\end{tabular} | |
\bigskip | |
The \textbf{negation of $p$} states that if $p$ is true, then $\neg p$ is false, and if $p$ is false, then $\neg p$ is true. | |
\begin{tabular}{c|c} | |
P & $\neg P$ \\ | |
\hline | |
0 & 1 \\ | |
1 & 0 \\ | |
\end{tabular} | |
\bigskip | |
\begin{tabular}{cc|cccc} | |
P & Q & $(P \wedge Q)$ & $(P \lor Q)$ & $(P \rightarrow Q)$ & $(P \leftrightarrow Q)$ \\ | |
\hline | |
0 & 0 & 0 & 0 & 1 & 1\\ | |
0 & 1 & 0 & 1 & 1 & 0\\ | |
1 & 0 & 0 & 1 & 0 & 0\\ | |
1 & 1 & 1 & 1 & 1 & 1\\ | |
\end{tabular} | |
\newpage | |
\subsection{S-rules, simplifications} | |
Some logical connectives can be simplified without further information. | |
\medskip | |
\textbf{And} \ldots both $p$ and $q$ are true | |
\begin{equation} | |
\frac{(P \wedge Q)}{P, Q} | |
\end{equation} | |
\medskip | |
\textbf{Not either} \ldots both $p$ and $q$ are false | |
\begin{equation} | |
\frac{\neg (P \lor Q)}{\neg P, \neg Q} | |
\end{equation} | |
\medskip | |
\textbf{False implication} \ldots $p$ is true and $q$ is false | |
\begin{equation} | |
\frac{\neg (P \rightarrow Q)}{ P, \neg Q} | |
\end{equation} | |
\subsection{I-rules, inference} | |
\textbf{I-rules} are used to infer a conclusion from two premises | |
With a \textbf{not both} or \textbf{nand} statement, only one part is true, so affirmation of one part allows us to deny the other: | |
\begin{equation} | |
\begin{tabular}{c} | |
$\neg(P \wedge Q)$\\ | |
$Q$ \\ | |
\hline | |
$\neg P$\\ | |
\end{tabular} | |
\tag{I-1}\label{eq:I-1} | |
\end{equation} | |
\begin{equation} | |
\begin{tabular}{c} | |
$\neg(P \wedge Q)$\\ | |
$P$ \\ | |
\hline | |
$\neg Q$\\ | |
\end{tabular} | |
\tag{I-2}\label{eq:I-2} | |
\end{equation} | |
However we cannot make an inference given the negation of one of the statements: | |
\begin{tabular}{c} | |
$\neg(P \wedge Q)$ \\ | |
$\neg P$ \\ | |
\hline | |
nil\\ | |
\end{tabular} | |
\bigskip | |
Denying one part of an \textbf{or} allows us to infer the truth value of the other part: | |
\begin{equation} | |
\begin{tabular}{c} | |
$\neg(P \lor Q)$ \\ | |
$\neg P$ \\ | |
\hline | |
$Q$\\ | |
\end{tabular} | |
\tag{I-3}\label{eq:I-3} | |
\end{equation} | |
\begin{equation} | |
\begin{tabular}{c} | |
$\neg(P \lor Q)$ \\ | |
$\neg Q$ \\ | |
\hline | |
$P$\\ | |
\end{tabular} | |
\tag{I-4}\label{eq:I-4} | |
\end{equation} | |
\begin{equation} | |
(P \lor Q), \neg P \rightarrow Q | |
\end{equation} | |
\begin{equation} | |
(P \lor Q), \neg Q \rightarrow P | |
\end{equation} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment