Created
December 29, 2011 19:36
-
-
Save lbjay/1535822 to your computer and use it in GitHub Desktop.
pdf-extract extract --sections
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?xml version="1.0"?> | |
<pdf> | |
<section line_height="9.96" font="KAAPYP+CMR10" letter_ratio="0.02" year_ratio="0.0" cap_ratio="0.0" name_ratio="0.2767857142857143" | |
word_count="112" lateness="0.06666666666666667" reference_score="4.6"> | |
<line x_offset="0.0" y_offset="117.01" spacing="0.5">Abstract.</line> | |
<line x_offset="57.0" y_offset="116.52" spacing="-9.47">Theory is presented for the distributions of local process intensity | |
and</line> | |
<line x_offset="0.0" y_offset="103.56" spacing="3.0">local average pore dimensions in random fibrous materials. For complete | |
partitioning</line> | |
<line x_offset="0.0" y_offset="90.6" spacing="3.0">of the network into contiguous square zones, the variance of local process | |
intensity</line> | |
<line x_offset="0.0" y_offset="77.64" spacing="3.0">is shown to be proportional to the mean process intensity and inversely | |
proportional</line> | |
<line x_offset="0.0" y_offset="64.68" spacing="3.0">to the zone size. The coefficient of variation of local average pore area is | |
shown</line> | |
<line x_offset="0.0" y_offset="51.72" spacing="3.0">to be approximately double that of the local average pore diameter with | |
both</line> | |
<line x_offset="0.0" y_offset="38.76" spacing="3.0">properties being inversely proportional to the square root of zone size and | |
mean process</line> | |
<line x_offset="0.0" y_offset="25.92" spacing="2.88">intensity. The results have relevance to heterogenous near-planar fibrous | |
materials</line> | |
<line x_offset="0.0" y_offset="12.96" spacing="3.0">including paper, nonwoven textiles, nanofibrous composites and electrospun | |
polymer</line> | |
<line x_offset="0.0" y_offset="0.0" spacing="3.0">fibre networks.</line> | |
<component x="143.76" y="396.75" width="373.2" height="126.48" page="1" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.07" year_ratio="0.0" cap_ratio="0.05" | |
name_ratio="0.24596774193548387" word_count="496" lateness="0.13333333333333333" reference_score="6.54"> | |
<line x_offset="195.12" y_offset="622.16" spacing="0.55">i.e.</line> | |
<line x_offset="0.0" y_offset="621.6" spacing="-11.41">The global average pore size of thin, near-planar, heterogeneous fibrous | |
materials</line> | |
<line x_offset="0.0" y_offset="605.64" spacing="3.99">and its distribution have been widely studied using statistical geometry and | |
simulation.</line> | |
<line x_offset="0.0" y_offset="589.68" spacing="3.99">Typically the context of these studies has been materials with widespread | |
application</line> | |
<line x_offset="0.0" y_offset="573.84" spacing="3.87">in society and industry such as paper [1, 2], nonwoven textiles [3], and | |
fibrous filter</line> | |
<line x_offset="0.0" y_offset="557.88" spacing="3.99">media [4, 5]. Interest in the structural characteristics of fibrous | |
materials has increased</line> | |
<line x_offset="0.0" y_offset="541.92" spacing="3.99">in recent years as researchers seek to develop materials for future | |
applications such</line> | |
<line x_offset="0.0" y_offset="525.96" spacing="3.99">as carbon nanotube 'buckypaper' [6, 7], nanofibrous composites [8, 9] and | |
electrospun</line> | |
<line x_offset="0.0" y_offset="510.0" spacing="3.99">fibrous networks for application as scaffolds in tissue engineering [10, | |
11].</line> | |
<line x_offset="23.4" y_offset="494.04" spacing="3.99">In a seminal paper, Miles [12] provides several properties of the polygons | |
generated</line> | |
<line x_offset="0.0" y_offset="478.2" spacing="3.87">by the stochastic division of a plane by a Poisson process of straight lines | |
with infinite</line> | |
<line x_offset="0.0" y_offset="462.24" spacing="3.99">length. A graphical representation of such a process is given in Figure 1a. | |
The process</line> | |
<line x_offset="356.88" y_offset="446.29" spacing="3.99">τ</line> | |
<line x_offset="0.0" y_offset="446.28" spacing="-11.96">intensity is characterized by the expected line length per unit area, | |
¯. The following</line> | |
<line x_offset="0.0" y_offset="430.32" spacing="3.99">results of Miles are utilized in the present study:</line> | |
<line x_offset="46.8" y_offset="408.36" spacing="9.99">The expected area of polygons is</line> | |
<line x_offset="35.04" y_offset="399.88" spacing="-11.97">•</line> | |
<line x_offset="143.64" y_offset="397.57" spacing="-9.64">π</line> | |
<line x_offset="157.92" y_offset="389.53" spacing="-3.92">.</line> | |
<line x_offset="406.32" y_offset="389.52" spacing="-11.96">(1)</line> | |
<line x_offset="118.56" y_offset="389.52" spacing="-11.97">a¯ =</line> | |
<line x_offset="147.96" y_offset="385.73" spacing="-4.18">2</line> | |
<line x_offset="141.6" y_offset="381.25" spacing="-7.48">τ</line> | |
<line x_offset="142.2" y_offset="381.24" spacing="-11.96">¯</line> | |
<line x_offset="46.8" y_offset="369.0" spacing="0.27">The distribution of diameters of the largest circle inscribed within</line> | |
<line x_offset="35.04" y_offset="360.52" spacing="-11.97">•</line> | |
<line x_offset="46.8" y_offset="353.04" spacing="-4.48">polygons is exponential with mean</line> | |
<line x_offset="141.84" y_offset="339.0" spacing="2.07">1</line> | |
<line x_offset="120.6" y_offset="334.08" spacing="-7.05">¯</line> | |
<line x_offset="118.56" y_offset="330.97" spacing="-8.85">d</line> | |
<line x_offset="406.32" y_offset="330.96" spacing="-11.96">(2)</line> | |
<line x_offset="127.92" y_offset="330.96" spacing="-11.97">=</line> | |
<line x_offset="141.6" y_offset="322.81" spacing="-3.81">τ</line> | |
<line x_offset="142.2" y_offset="322.8" spacing="-11.96">¯</line> | |
<line x_offset="81.6" y_offset="312.0" spacing="-1.17">¯</line> | |
<line x_offset="46.8" y_offset="308.89" spacing="-8.85">a</line> | |
<line x_offset="79.56" y_offset="308.89" spacing="-11.96">d</line> | |
<line x_offset="46.92" y_offset="308.88" spacing="-11.96">¯ and are independent of the width of lines, for any probability | |
density</line> | |
<line x_offset="35.04" y_offset="300.4" spacing="-11.97">•</line> | |
<line x_offset="46.8" y_offset="292.92" spacing="-4.48">of line widths.</line> | |
<line x_offset="0.0" y_offset="270.96" spacing="9.99">Miles showed also that the expected number of sides per polygon is 4 and | |
that the</line> | |
<line x_offset="194.16" y_offset="264.07" spacing="0.92">2</line> | |
<line x_offset="189.0" y_offset="260.81" spacing="-4.71">π</line> | |
<line x_offset="119.04" y_offset="255.01" spacing="-6.16">P</line> | |
<line x_offset="0.0" y_offset="255.0" spacing="-11.96">fraction of triangles is (3) = (2</line> | |
<line x_offset="199.44" y_offset="255.0" spacing="-11.97">)</line> | |
<line x_offset="222.72" y_offset="255.0" spacing="-11.97">0 355; Tanner [13] obtained the fraction of.</line> | |
<line x_offset="191.52" y_offset="251.93" spacing="-4.9">6</line> | |
<line x_offset="175.32" y_offset="246.52" spacing="-15.04">−</line> | |
<line x_offset="208.68" y_offset="246.52" spacing="-20.44">≈</line> | |
<line x_offset="77.16" y_offset="239.17" spacing="-4.6">P</line> | |
<line x_offset="123.24" y_offset="239.17" spacing="-11.96">.</line> | |
<line x_offset="0.0" y_offset="239.16" spacing="-11.96">quadrilaterals, (4) 0 381. The fractions of polygons with more than 4 | |
sides are not</line> | |
<line x_offset="104.76" y_offset="230.68" spacing="-11.97">≈</line> | |
<line x_offset="0.0" y_offset="223.2" spacing="-4.48">known analytically, but have been obtained by Monte Carlo methods [14, 15]. | |
We note</line> | |
<line x_offset="0.0" y_offset="207.24" spacing="3.99">that very similar results were obtained by Piekaar and Clarenburg [4] from | |
simulations</line> | |
<line x_offset="0.0" y_offset="191.28" spacing="3.99">of networks of fibres with finite length. Crain and Miles [14] observed the | |
probability of</line> | |
<line x_offset="0.0" y_offset="175.33" spacing="3.99">n</line> | |
<line x_offset="350.04" y_offset="175.33" spacing="-11.96">n</line> | |
<line x_offset="6.96" y_offset="175.32" spacing="-11.96">-sided polygons was well approximated by the Poisson variable (</line> | |
<line x_offset="373.56" y_offset="175.32" spacing="-11.97">3) with mean</line> | |
<line x_offset="360.72" y_offset="166.84" spacing="-11.97">−</line> | |
<line x_offset="4.56" y_offset="159.37" spacing="-4.48">n</line> | |
<line x_offset="0.0" y_offset="159.36" spacing="-11.96">(¯ 3) = 1. This result was used by Dodson and Sampson [16] to | |
approximate</line> | |
<line x_offset="15.72" y_offset="150.88" spacing="-11.97">−</line> | |
<line x_offset="0.0" y_offset="143.52" spacing="-4.6">the probability density functions for polygon areas and perimeters, assuming | |
regular</line> | |
<line x_offset="0.0" y_offset="127.56" spacing="3.99">polygons. The coefficient of variation of polygon area was close to 2 and | |
that of polygon</line> | |
<line x_offset="74.04" y_offset="112.96" spacing="-5.85">√</line> | |
<line x_offset="84.0" y_offset="111.6" spacing="-10.6">3 2; despite the assumption of regularity, these are close to the | |
analytic/</line> | |
<line x_offset="0.0" y_offset="111.6" spacing="-11.97">perimeter was</line> | |
<line x_offset="0.0" y_offset="95.64" spacing="3.99">results of Miles [12].</line> | |
<line x_offset="23.4" y_offset="79.68" spacing="3.99">Now, each intersection between lines represents one of the vertices of four | |
polygons</line> | |
<line x_offset="0.0" y_offset="63.72" spacing="3.99">and for a Poisson process of infinite lines, Miles [12] gives the expected | |
number of</line> | |
<line x_offset="160.68" y_offset="53.21" spacing="2.54">2</line> | |
<line x_offset="186.0" y_offset="48.44" spacing="-6.09">i.e.</line> | |
<line x_offset="154.32" y_offset="47.89" spacing="-11.41">τ /π</line> | |
<line x_offset="212.64" y_offset="47.89" spacing="-11.96">/a</line> | |
<line x_offset="0.0" y_offset="47.88" spacing="-11.96">intersections per unit area as ¯ ,</line> | |
<line x_offset="206.76" y_offset="47.88" spacing="-11.97">1 ¯. For the case of networks lines with finite</line> | |
<line x_offset="0.0" y_offset="31.92" spacing="3.99">length and constant width (Figure 1b), the expected number of intersections | |
per unit</line> | |
<line x_offset="0.0" y_offset="15.96" spacing="3.99">area was derived by Kallmes and Corte [17] for infinite networks; in | |
practical contexts,</line> | |
<line x_offset="0.0" y_offset="0.0" spacing="3.99">this can be considered satisfied of samples are large relative to the | |
dimensions of voids.</line> | |
<component x="72.0" y="39.72" width="444.82" height="633.57" page="2" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="5.7" font="ECYBFT+Myriad-Roman" letter_ratio="0.0" year_ratio="0.0" cap_ratio="0.0" name_ratio="0" | |
word_count="2" lateness="0.2" reference_score="5.33"> | |
<line x_offset="0.0" y_offset="0.0" spacing="0.0">ab</line> | |
<line x_offset="0.0" y_offset="0.0" spacing="0.0">c</line> | |
<component x="203.85" y="697.14" width="130.19" height="5.7" page="3" page_width="612.0" page_height="792.0"/> | |
<component x="456.22" y="697.14" width="3.54" height="5.7" page="3" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.02" year_ratio="0.0" cap_ratio="0.0" | |
name_ratio="0.32142857142857145" word_count="28" lateness="0.26666666666666666" reference_score="5.68"> | |
<line x_offset="0.0" y_offset="31.92" spacing="0.0">of infinite lines. From this we obtain approximate probability density | |
functions for the</line> | |
<line x_offset="0.0" y_offset="15.96" spacing="3.99">distribution of local averages of pore area and pore diameter in planar | |
stochastic fibrous</line> | |
<line x_offset="0.0" y_offset="0.0" spacing="3.99">materials.</line> | |
<component x="72.0" y="657.24" width="444.76" height="43.89" page="4" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.08" year_ratio="0.0" cap_ratio="0.04" | |
name_ratio="0.1740139211136891" word_count="431" lateness="0.26666666666666666" reference_score="7.78"> | |
<line x_offset="0.0" y_offset="563.41" spacing="0.0">We seek the variance of local process intensity for a planar Poisson line | |
process of mean</line> | |
<line x_offset="51.0" y_offset="547.58" spacing="3.87">τ</line> | |
<line x_offset="322.56" y_offset="547.58" spacing="-11.96">x</line> | |
<line x_offset="0.0" y_offset="547.57" spacing="-11.96">intensity, ¯, partitioned into contiguous square zones of side, . We | |
denote the local</line> | |
<line x_offset="186.0" y_offset="531.62" spacing="3.99">τ</line> | |
<line x_offset="0.0" y_offset="531.61" spacing="-11.96">process intensity within such zones, .</line> | |
<line x_offset="438.36" y_offset="515.66" spacing="3.99">τ</line> | |
<line x_offset="23.4" y_offset="515.65" spacing="-11.96">Before proceeding, it is helpful to obtain estimates of the likely range | |
of ¯</line> | |
<line x_offset="186.24" y_offset="506.4" spacing="-27.59">(</line> | |
<line x_offset="0.0" y_offset="499.69" spacing="-5.26">encountered in real materials. If the expected mass per unit area, or | |
'areal density', of a</line> | |
<line x_offset="128.64" y_offset="489.06" spacing="2.66">2</line> | |
<line x_offset="432.12" y_offset="489.06" spacing="-7.97">1</line> | |
<line x_offset="85.08" y_offset="486.97" spacing="-9.88">¯</line> | |
<line x_offset="83.4" y_offset="483.74" spacing="-8.73">β</line> | |
<line x_offset="388.56" y_offset="483.74" spacing="-11.96">δ</line> | |
<line x_offset="0.0" y_offset="483.73" spacing="-11.96">fibre network is, (kg m ), and the linear density of the constituent | |
fibres is (kg m ),</line> | |
<line x_offset="122.04" y_offset="483.44" spacing="-10.84">−</line> | |
<line x_offset="425.52" y_offset="483.44" spacing="-11.13">−</line> | |
<line x_offset="206.52" y_offset="471.01" spacing="0.46">¯</line> | |
<line x_offset="182.64" y_offset="467.78" spacing="-8.73">τ β/δ</line> | |
<line x_offset="0.0" y_offset="467.77" spacing="-11.96">then the expected process intensity, ¯ = . For materials such as | |
paper and nonwoven</line> | |
<line x_offset="319.8" y_offset="457.26" spacing="2.54">2</line> | |
<line x_offset="388.8" y_offset="451.94" spacing="-6.64">τ</line> | |
<line x_offset="0.0" y_offset="451.93" spacing="-11.96">textiles, with mass per unit area between 20 and 100 g m we expect ¯ | |
to be of</line> | |
<line x_offset="313.2" y_offset="451.64" spacing="-10.84">−</line> | |
<line x_offset="43.68" y_offset="441.3" spacing="2.37">2</line> | |
<line x_offset="76.44" y_offset="441.3" spacing="-7.97">1</line> | |
<line x_offset="0.0" y_offset="435.97" spacing="-6.64">order 10 mm ; for electrospun networks of polymer fibres with mass per unit | |
area</line> | |
<line x_offset="69.84" y_offset="435.68" spacing="-10.84">−</line> | |
<line x_offset="79.2" y_offset="425.34" spacing="2.37">2</line> | |
<line x_offset="404.04" y_offset="425.34" spacing="-7.97">3</line> | |
<line x_offset="436.8" y_offset="425.34" spacing="-7.97">1</line> | |
<line x_offset="234.36" y_offset="420.02" spacing="-6.64">µ</line> | |
<line x_offset="308.76" y_offset="420.02" spacing="-11.96">τ</line> | |
<line x_offset="0.0" y_offset="420.01" spacing="-11.96">around 10 g m and fibre diameter around 1 m we expect ¯ to be of | |
order 10 mm .</line> | |
<line x_offset="72.6" y_offset="419.72" spacing="-10.84">−</line> | |
<line x_offset="430.2" y_offset="419.72" spacing="-11.13">−</line> | |
<line x_offset="315.0" y_offset="404.06" spacing="3.7">l</line> | |
<line x_offset="23.4" y_offset="404.05" spacing="-11.96">From Coleman [35] the probability density of the length, , of random | |
secants in a</line> | |
<line x_offset="318.48" y_offset="403.26" spacing="-7.18">1</line> | |
<line x_offset="0.0" y_offset="388.09" spacing="3.2">unit square is</line> | |
<line x_offset="128.64" y_offset="373.5" spacing="6.62">2 l</line> | |
<line x_offset="136.8" y_offset="372.92" spacing="-5.4">1</line> | |
<line x_offset="231.24" y_offset="367.71" spacing="-6.74">< l</line> | |
<line x_offset="211.32" y_offset="367.69" spacing="-11.96">if 0</line> | |
<line x_offset="267.84" y_offset="367.69" spacing="-11.97">1</line> | |
<line x_offset="247.2" y_offset="366.9" spacing="-7.18">1</line> | |
<line x_offset="132.24" y_offset="364.5" spacing="-5.57">π</line> | |
<line x_offset="255.24" y_offset="359.22" spacing="-15.16">≤</line> | |
<line x_offset="187.92" y_offset="357.54" spacing="-6.29">2 l</line> | |
<line x_offset="147.6" y_offset="357.42" spacing="-7.85">4</line> | |
<line x_offset="196.08" y_offset="356.96" spacing="-5.52">1</line> | |
<line x_offset="267.84" y_offset="353.1" spacing="-16.58">√</line> | |
<line x_offset="111.84" y_offset="352.08" spacing="-35.83"></line> | |
<line x_offset="231.24" y_offset="351.75" spacing="-11.62">< l</line> | |
<line x_offset="211.32" y_offset="351.73" spacing="-11.96">if 1</line> | |
<line x_offset="277.8" y_offset="351.73" spacing="-11.97">2</line> | |
<line x_offset="247.2" y_offset="350.94" spacing="-7.18">1</line> | |
<line x_offset="155.88" y_offset="349.28" spacing="-4.32">2</line> | |
<line x_offset="71.76" y_offset="349.22" spacing="-11.9">f l</line> | |
<line x_offset="429.72" y_offset="349.21" spacing="-11.96">(3)</line> | |
<line x_offset="78.84" y_offset="349.21" spacing="-11.97">( ) =</line> | |
<line x_offset="191.4" y_offset="348.66" spacing="-7.42">π</line> | |
<line x_offset="86.88" y_offset="348.42" spacing="-7.73">1</line> | |
<line x_offset="128.64" y_offset="346.02" spacing="-5.57">π l</line> | |
<line x_offset="153.24" y_offset="346.02" spacing="-7.97">l</line> | |
<line x_offset="166.68" y_offset="346.02" spacing="-7.97">1</line> | |
<line x_offset="137.76" y_offset="345.44" spacing="-5.4">1</line> | |
<line x_offset="143.28" y_offset="344.58" spacing="-19.58">√</line> | |
<line x_offset="155.76" y_offset="344.0" spacing="-5.4">1</line> | |
<line x_offset="255.24" y_offset="343.26" spacing="-19.7">≤</line> | |
<line x_offset="174.72" y_offset="343.26" spacing="-20.44">−</line> | |
<line x_offset="160.08" y_offset="340.4" spacing="-8.27">−</line> | |
<line x_offset="111.84" y_offset="337.8" spacing="-37.84"></line> | |
<line x_offset="127.44" y_offset="330.37" spacing="-4.54">0</line> | |
<line x_offset="211.32" y_offset="330.37" spacing="-11.97">otherwise.</line> | |
<line x_offset="111.84" y_offset="316.2" spacing="-22.67"></line> | |
<line x_offset="111.84" y_offset="312.72" spacing="-33.37"></line> | |
<line x_offset="57.84" y_offset="310.93" spacing="-10.18">¯</line> | |
<line x_offset="197.64" y_offset="309.18" spacing="-18.69">√</line> | |
<line x_offset="117.6" y_offset="309.18" spacing="-20.44">√</line> | |
<line x_offset="225.48" y_offset="307.82" spacing="-10.6">/ π</line> | |
<line x_offset="277.2" y_offset="307.82" spacing="-11.96">.</line> | |
<line x_offset="57.84" y_offset="307.82" spacing="-11.96">l</line> | |
<line x_offset="127.56" y_offset="307.81" spacing="-11.96">2 + 3 log(1 + 2)</line> | |
<line x_offset="231.36" y_offset="307.81" spacing="-11.97">(3 ) 0 946.</line> | |
<line x_offset="0.0" y_offset="307.81" spacing="-11.97">with mean = 4 1</line> | |
<line x_offset="61.32" y_offset="307.02" spacing="-7.18">1</line> | |
<line x_offset="258.72" y_offset="299.34" spacing="-12.76">≈</line> | |
<line x_offset="105.72" y_offset="299.34" spacing="-20.44">−</line> | |
<line x_offset="218.04" y_offset="292.32" spacing="-29.83">(</line> | |
<line x_offset="91.68" y_offset="292.32" spacing="-36.85">(</line> | |
<line x_offset="323.76" y_offset="291.86" spacing="-11.5">x</line> | |
<line x_offset="23.4" y_offset="291.85" spacing="-11.96">The expected total length of lines in a square zone of side is</line> | |
<line x_offset="110.4" y_offset="275.94" spacing="7.94">2</line> | |
<line x_offset="73.08" y_offset="273.01" spacing="-9.04">¯</line> | |
<line x_offset="71.76" y_offset="269.9" spacing="-8.85">L τ x .</line> | |
<line x_offset="83.04" y_offset="269.89" spacing="-11.96">= ¯</line> | |
<line x_offset="429.72" y_offset="269.89" spacing="-11.97">(4)</line> | |
<line x_offset="400.08" y_offset="251.17" spacing="6.75">¯ ¯</line> | |
<line x_offset="258.36" y_offset="248.07" spacing="-8.85">x l</line> | |
<line x_offset="400.08" y_offset="248.07" spacing="-11.96">l</line> | |
<line x_offset="424.56" y_offset="248.07" spacing="-11.96">l x</line> | |
<line x_offset="0.0" y_offset="248.05" spacing="-11.96">We denote the length of secants in a square of side , , with expected | |
length, = .</line> | |
<line x_offset="275.16" y_offset="247.26" spacing="-7.18">x</line> | |
<line x_offset="403.56" y_offset="247.26" spacing="-7.97">x</line> | |
<line x_offset="428.04" y_offset="247.26" spacing="-7.97">1</line> | |
<line x_offset="338.52" y_offset="232.1" spacing="3.2">x</line> | |
<line x_offset="0.0" y_offset="232.09" spacing="-11.96">It follows that the expected number of secants in a square of side | |
is</line> | |
<line x_offset="101.04" y_offset="216.01" spacing="4.11">¯</line> | |
<line x_offset="99.72" y_offset="213.03" spacing="-8.97">L</line> | |
<line x_offset="126.24" y_offset="213.01" spacing="-11.96">τ x¯</line> | |
<line x_offset="75.12" y_offset="207.97" spacing="-6.93">¯</line> | |
<line x_offset="150.24" y_offset="204.99" spacing="-8.97">.</line> | |
<line x_offset="71.76" y_offset="204.98" spacing="-11.96">N</line> | |
<line x_offset="112.56" y_offset="204.97" spacing="-11.96">=</line> | |
<line x_offset="429.72" y_offset="204.97" spacing="-11.97">(5)</line> | |
<line x_offset="85.68" y_offset="204.97" spacing="-11.97">=</line> | |
<line x_offset="129.48" y_offset="199.45" spacing="-6.45">¯</line> | |
<line x_offset="129.6" y_offset="196.35" spacing="-8.85">l</line> | |
<line x_offset="133.08" y_offset="195.54" spacing="-7.17">1</line> | |
<line x_offset="99.24" y_offset="195.51" spacing="-11.92">l</line> | |
<line x_offset="102.72" y_offset="194.7" spacing="-7.17">x</line> | |
<line x_offset="313.92" y_offset="175.1" spacing="7.64">x N</line> | |
<line x_offset="338.4" y_offset="152.88" spacing="-14.62">(</line> | |
<line x_offset="429.72" y_offset="126.01" spacing="14.9">(6)</line> | |
<line x_offset="429.72" y_offset="66.61" spacing="47.43">(7)</line> | |
<line x_offset="429.72" y_offset="14.05" spacing="40.59">(8)</line> | |
<line x_offset="23.4" y_offset="175.09" spacing="-173.01">If the number of lines contained in a given square of side is , then the | |
total line</line> | |
<line x_offset="0.0" y_offset="159.13" spacing="3.99">length in that square is</line> | |
<line x_offset="102.48" y_offset="145.93" spacing="7.44">(</line> | |
<line x_offset="100.32" y_offset="141.9" spacing="-3.94">N</line> | |
<line x_offset="71.76" y_offset="126.03" spacing="3.92">L</line> | |
<line x_offset="114.72" y_offset="126.03" spacing="-11.96">l</line> | |
<line x_offset="136.44" y_offset="126.03" spacing="-11.96">,</line> | |
<line x_offset="83.04" y_offset="126.01" spacing="-11.96">=</line> | |
<line x_offset="118.2" y_offset="125.22" spacing="-7.18">x,i</line> | |
<line x_offset="97.2" y_offset="113.1" spacing="4.15">i=0</line> | |
<line x_offset="95.4" y_offset="112.08" spacing="-35.82">(</line> | |
<line x_offset="72.72" y_offset="103.8" spacing="-28.57">(</line> | |
<line x_offset="0.0" y_offset="95.65" spacing="-3.82">such that the local process intensity is</line> | |
<line x_offset="96.84" y_offset="74.67" spacing="9.03">L</line> | |
<line x_offset="115.44" y_offset="66.63" spacing="-3.92">.</line> | |
<line x_offset="71.76" y_offset="66.63" spacing="-11.95">τ</line> | |
<line x_offset="81.48" y_offset="66.61" spacing="-11.96">=</line> | |
<line x_offset="101.64" y_offset="62.94" spacing="-4.3">2</line> | |
<line x_offset="95.04" y_offset="58.47" spacing="-7.48">x</line> | |
<line x_offset="97.8" y_offset="52.56" spacing="-30.94">(</line> | |
<line x_offset="72.0" y_offset="41.4" spacing="-25.69">(</line> | |
<line x_offset="154.08" y_offset="14.07" spacing="15.38">,</line> | |
<line x_offset="0.0" y_offset="43.09" spacing="-41.0">It follows that the variance of local process intensity is given by</line> | |
<line x_offset="123.24" y_offset="27.54" spacing="7.58">2</line> | |
<line x_offset="132.6" y_offset="22.23" spacing="-6.64">L</line> | |
<line x_offset="116.16" y_offset="22.23" spacing="-11.96">σ</line> | |
<line x_offset="128.04" y_offset="22.21" spacing="-11.96">( )</line> | |
<line x_offset="122.76" y_offset="20.22" spacing="-5.98">x</line> | |
<line x_offset="124.92" y_offset="5.91" spacing="2.36">x</line> | |
<line x_offset="131.52" y_offset="10.38" spacing="-12.45">4</line> | |
<line x_offset="133.56" y_offset="0.0" spacing="-26.46">(</line> | |
<component x="72.0" y="32.03" width="444.81" height="575.38" page="4" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.16" year_ratio="0.0" cap_ratio="0.09" | |
name_ratio="0.10554089709762533" word_count="379" lateness="0.3333333333333333" reference_score="10.03"> | |
<line x_offset="103.8" y_offset="477.48" spacing="0.0">x</line> | |
<line x_offset="0.0" y_offset="477.47" spacing="-11.96">where the subscript is included to denote that the variance depends on the | |
zone size.</line> | |
<line x_offset="87.48" y_offset="466.84" spacing="2.66">2</line> | |
<line x_offset="135.48" y_offset="466.84" spacing="-7.97">2 2</line> | |
<line x_offset="80.4" y_offset="461.52" spacing="-6.64">σ L x σ L</line> | |
<line x_offset="219.36" y_offset="461.52" spacing="-11.96">L</line> | |
<line x_offset="0.0" y_offset="461.51" spacing="-11.96">Note also that ( ) =</line> | |
<line x_offset="154.08" y_offset="461.51" spacing="-11.97">( ), where</line> | |
<line x_offset="237.12" y_offset="461.51" spacing="-11.97">is the total line length in a unit square</line> | |
<line x_offset="166.56" y_offset="460.72" spacing="-7.18">1</line> | |
<line x_offset="227.28" y_offset="460.72" spacing="-7.97">1</line> | |
<line x_offset="87.0" y_offset="459.52" spacing="-6.77">x</line> | |
<line x_offset="56.88" y_offset="445.56" spacing="2.0">N</line> | |
<line x_offset="0.0" y_offset="445.55" spacing="-11.96">containing secants. Thus,</line> | |
<line x_offset="97.92" y_offset="439.29" spacing="-30.59">(</line> | |
<line x_offset="159.6" y_offset="439.29" spacing="-36.85">(</line> | |
<line x_offset="220.32" y_offset="439.29" spacing="-36.85">(</line> | |
<line x_offset="123.24" y_offset="429.88" spacing="1.45">2</line> | |
<line x_offset="116.16" y_offset="424.56" spacing="-6.64">σ L</line> | |
<line x_offset="127.92" y_offset="424.55" spacing="-11.96">( )</line> | |
<line x_offset="140.4" y_offset="423.76" spacing="-7.18">1</line> | |
<line x_offset="59.88" y_offset="423.33" spacing="-36.42">(</line> | |
<line x_offset="78.84" y_offset="422.44" spacing="-7.07">2</line> | |
<line x_offset="158.76" y_offset="416.52" spacing="-6.04">.</line> | |
<line x_offset="71.76" y_offset="416.52" spacing="-11.95">σ τ</line> | |
<line x_offset="429.72" y_offset="416.51" spacing="-11.96">(9)</line> | |
<line x_offset="83.64" y_offset="416.51" spacing="-11.97">( ) =</line> | |
<line x_offset="78.36" y_offset="414.52" spacing="-5.98">x</line> | |
<line x_offset="133.8" y_offset="412.72" spacing="-6.17">2</line> | |
<line x_offset="127.2" y_offset="408.36" spacing="-7.6">x</line> | |
<line x_offset="133.44" y_offset="402.33" spacing="-30.82">(</line> | |
<line x_offset="88.44" y_offset="391.29" spacing="-25.81">(</line> | |
<line x_offset="31.08" y_offset="389.64" spacing="-10.3">L</line> | |
<line x_offset="366.6" y_offset="389.64" spacing="-11.96">N</line> | |
<line x_offset="0.0" y_offset="389.63" spacing="-11.96">Now, is a random variable obtained as the sum of the lengths of</line> | |
<line x_offset="382.32" y_offset="389.63" spacing="-11.97">independent</line> | |
<line x_offset="39.0" y_offset="388.84" spacing="-7.18">1</line> | |
<line x_offset="338.64" y_offset="384.59" spacing="-1.51">(</line> | |
<line x_offset="336.6" y_offset="380.56" spacing="-3.94">N</line> | |
<line x_offset="272.52" y_offset="374.23" spacing="-4.53">i.e.</line> | |
<line x_offset="352.8" y_offset="373.68" spacing="-11.41">l</line> | |
<line x_offset="408.48" y_offset="373.68" spacing="-11.96">l</line> | |
<line x_offset="293.4" y_offset="373.68" spacing="-11.96">L</line> | |
<line x_offset="366.24" y_offset="373.67" spacing="-11.96">, where</line> | |
<line x_offset="426.48" y_offset="373.67" spacing="-11.97">is a</line> | |
<line x_offset="0.0" y_offset="373.67" spacing="-11.97">and identically distributed secants in a unit square,</line> | |
<line x_offset="310.44" y_offset="373.67" spacing="-11.97">=</line> | |
<line x_offset="356.28" y_offset="372.88" spacing="-7.18">1,i</line> | |
<line x_offset="411.96" y_offset="372.88" spacing="-7.97">1,i</line> | |
<line x_offset="301.32" y_offset="372.88" spacing="-7.97">1</line> | |
<line x_offset="336.6" y_offset="371.2" spacing="-6.29">i=0</line> | |
<line x_offset="32.16" y_offset="367.41" spacing="-33.06">(</line> | |
<line x_offset="369.48" y_offset="367.41" spacing="-36.85">(</line> | |
<line x_offset="404.76" y_offset="357.84" spacing="-2.38">N</line> | |
<line x_offset="0.0" y_offset="357.83" spacing="-11.96">continuous random variable with probability density given by Equation (3) | |
and takes</line> | |
<line x_offset="323.88" y_offset="357.45" spacing="-36.47">(</line> | |
<line x_offset="294.36" y_offset="351.57" spacing="-30.97">(</line> | |
<line x_offset="215.28" y_offset="341.88" spacing="-2.26">L</line> | |
<line x_offset="0.0" y_offset="341.87" spacing="-11.96">integer values. The mean and variance of</line> | |
<line x_offset="231.96" y_offset="341.87" spacing="-11.97">are given by [36]</line> | |
<line x_offset="223.2" y_offset="341.08" spacing="-7.18">1</line> | |
<line x_offset="407.64" y_offset="335.61" spacing="-31.38">(</line> | |
<line x_offset="133.68" y_offset="323.03" spacing="0.62">¯</line> | |
<line x_offset="73.08" y_offset="322.91" spacing="-11.85">¯</line> | |
<line x_offset="124.44" y_offset="322.91" spacing="-11.97">¯</line> | |
<line x_offset="71.76" y_offset="319.92" spacing="-8.97">L</line> | |
<line x_offset="121.08" y_offset="319.92" spacing="-11.96">N l</line> | |
<line x_offset="108.72" y_offset="319.91" spacing="-11.96">=</line> | |
<line x_offset="423.96" y_offset="319.91" spacing="-11.97">(10)</line> | |
<line x_offset="216.36" y_offset="319.65" spacing="-36.59">(</line> | |
<line x_offset="79.68" y_offset="319.12" spacing="-7.43">1</line> | |
<line x_offset="137.16" y_offset="319.12" spacing="-7.97">1</line> | |
<line x_offset="185.76" y_offset="309.52" spacing="1.63">2</line> | |
<line x_offset="199.56" y_offset="306.88" spacing="-5.33">2</line> | |
<line x_offset="78.84" y_offset="306.88" spacing="-7.97">2</line> | |
<line x_offset="140.76" y_offset="306.88" spacing="-7.97">2</line> | |
<line x_offset="124.44" y_offset="304.07" spacing="-9.16">¯</line> | |
<line x_offset="177.24" y_offset="300.96" spacing="-8.85">l σ N .</line> | |
<line x_offset="71.76" y_offset="300.96" spacing="-11.96">σ L N σ l</line> | |
<line x_offset="204.24" y_offset="300.95" spacing="-11.96">( )</line> | |
<line x_offset="423.96" y_offset="300.95" spacing="-11.97">(11)</line> | |
<line x_offset="83.52" y_offset="300.95" spacing="-11.97">( ) =</line> | |
<line x_offset="145.56" y_offset="300.95" spacing="-11.97">( ) +</line> | |
<line x_offset="180.96" y_offset="300.16" spacing="-7.18">1</line> | |
<line x_offset="96.0" y_offset="300.16" spacing="-7.97">1</line> | |
<line x_offset="153.6" y_offset="300.16" spacing="-7.97">1</line> | |
<line x_offset="313.2" y_offset="284.44" spacing="7.75">2</line> | |
<line x_offset="356.76" y_offset="282.11" spacing="-9.64">¯</line> | |
<line x_offset="85.92" y_offset="279.12" spacing="-8.97">N</line> | |
<line x_offset="306.12" y_offset="279.12" spacing="-11.96">σ N N</line> | |
<line x_offset="0.0" y_offset="279.11" spacing="-11.96">We assume that</line> | |
<line x_offset="100.44" y_offset="279.11" spacing="-11.97">is a Poisson random variable, such that ( ) = and we have</line> | |
<line x_offset="211.8" y_offset="278.85" spacing="-36.59">(</line> | |
<line x_offset="89.04" y_offset="278.85" spacing="-36.85">(</line> | |
<line x_offset="192.84" y_offset="263.92" spacing="6.97">2</line> | |
<line x_offset="78.84" y_offset="261.28" spacing="-5.33">2</line> | |
<line x_offset="147.96" y_offset="261.28" spacing="-7.97">2</line> | |
<line x_offset="124.44" y_offset="258.35" spacing="-9.04">¯</line> | |
<line x_offset="88.92" y_offset="256.89" spacing="-35.39">(</line> | |
<line x_offset="325.44" y_offset="256.89" spacing="-36.85">(</line> | |
<line x_offset="184.44" y_offset="255.36" spacing="-10.42">l</line> | |
<line x_offset="71.76" y_offset="255.36" spacing="-11.96">σ L N σ l</line> | |
<line x_offset="423.96" y_offset="255.35" spacing="-11.96">(12)</line> | |
<line x_offset="83.52" y_offset="255.35" spacing="-11.97">( ) =</line> | |
<line x_offset="152.64" y_offset="255.35" spacing="-11.97">( ) +</line> | |
<line x_offset="188.16" y_offset="254.56" spacing="-7.18">1</line> | |
<line x_offset="96.0" y_offset="254.56" spacing="-7.97">1</line> | |
<line x_offset="160.68" y_offset="254.56" spacing="-7.97">1</line> | |
<line x_offset="197.64" y_offset="243.45" spacing="-25.74">(</line> | |
<line x_offset="133.68" y_offset="243.45" spacing="-36.85">(</line> | |
<line x_offset="106.32" y_offset="236.44" spacing="-0.95">2</line> | |
<line x_offset="36.96" y_offset="233.32" spacing="-4.85">2</line> | |
<line x_offset="89.04" y_offset="233.13" spacing="-36.66">(</line> | |
<line x_offset="78.48" y_offset="233.08" spacing="-7.91">2</line> | |
<line x_offset="29.88" y_offset="228.0" spacing="-6.88">σ l</line> | |
<line x_offset="74.76" y_offset="228.0" spacing="-11.95">l</line> | |
<line x_offset="97.92" y_offset="228.0" spacing="-11.96">l</line> | |
<line x_offset="0.0" y_offset="227.99" spacing="-11.96">Now, ( ) =</line> | |
<line x_offset="111.12" y_offset="227.99" spacing="-11.97">. So</line> | |
<line x_offset="49.8" y_offset="227.2" spacing="-7.18">1</line> | |
<line x_offset="101.64" y_offset="227.2" spacing="-7.97">1</line> | |
<line x_offset="78.24" y_offset="226.0" spacing="-6.77">1</line> | |
<line x_offset="85.92" y_offset="219.51" spacing="-13.96">−</line> | |
<line x_offset="78.84" y_offset="211.96" spacing="-0.41">2</line> | |
<line x_offset="137.4" y_offset="211.12" spacing="-7.13">2</line> | |
<line x_offset="124.44" y_offset="209.03" spacing="-9.88">¯</line> | |
<line x_offset="150.0" y_offset="206.04" spacing="-8.97">.</line> | |
<line x_offset="133.68" y_offset="206.04" spacing="-11.96">l</line> | |
<line x_offset="71.76" y_offset="206.04" spacing="-11.95">σ L N</line> | |
<line x_offset="423.96" y_offset="206.03" spacing="-11.96">(13)</line> | |
<line x_offset="83.52" y_offset="206.03" spacing="-11.97">( ) =</line> | |
<line x_offset="96.0" y_offset="205.24" spacing="-7.18">1</line> | |
<line x_offset="137.16" y_offset="204.16" spacing="-6.89">1</line> | |
<line x_offset="60.24" y_offset="189.28" spacing="6.91">2</line> | |
<line x_offset="56.52" y_offset="184.08" spacing="-6.76">l</line> | |
<line x_offset="0.0" y_offset="184.07" spacing="-11.96">We obtain</line> | |
<line x_offset="69.0" y_offset="184.07" spacing="-11.97">as the second moment of the probability density given by Equation | |
(3):</line> | |
<line x_offset="89.04" y_offset="183.81" spacing="-36.59">(</line> | |
<line x_offset="60.0" y_offset="182.2" spacing="-6.35">1</line> | |
<line x_offset="107.88" y_offset="168.78" spacing="2.29">√</line> | |
<line x_offset="114.96" y_offset="167.8" spacing="-6.99">2</line> | |
<line x_offset="190.8" y_offset="161.75" spacing="-5.92">3</line> | |
<line x_offset="125.4" y_offset="159.64" spacing="-5.86">2</line> | |
<line x_offset="75.48" y_offset="158.8" spacing="-7.13">2</line> | |
<line x_offset="202.32" y_offset="153.72" spacing="-6.88">.</line> | |
<line x_offset="71.76" y_offset="153.72" spacing="-11.96">l</line> | |
<line x_offset="121.68" y_offset="153.72" spacing="-11.96">l f l</line> | |
<line x_offset="165.12" y_offset="153.72" spacing="-11.96">l</line> | |
<line x_offset="423.96" y_offset="153.71" spacing="-11.96">(14)</line> | |
<line x_offset="83.52" y_offset="153.71" spacing="-11.97">=</line> | |
<line x_offset="139.2" y_offset="153.71" spacing="-11.97">( ) d =</line> | |
<line x_offset="147.24" y_offset="152.92" spacing="-7.18">1</line> | |
<line x_offset="168.6" y_offset="152.92" spacing="-7.97">1</line> | |
<line x_offset="75.24" y_offset="151.84" spacing="-6.89">1</line> | |
<line x_offset="125.16" y_offset="151.72" spacing="-7.85">1</line> | |
<line x_offset="190.2" y_offset="145.56" spacing="-5.8">π</line> | |
<line x_offset="96.0" y_offset="144.81" spacing="-36.1">(</line> | |
<line x_offset="102.6" y_offset="143.92" spacing="-7.07">0</line> | |
<line x_offset="170.28" y_offset="131.44" spacing="4.51">2</line> | |
<line x_offset="254.28" y_offset="131.44" spacing="-7.97">2</line> | |
<line x_offset="250.44" y_offset="129.23" spacing="-9.76">¯</line> | |
<line x_offset="163.2" y_offset="126.0" spacing="-8.73">σ l</line> | |
<line x_offset="218.52" y_offset="126.0" spacing="-11.96">/π l</line> | |
<line x_offset="0.0" y_offset="125.99" spacing="-11.96">For completeness, we note that ( ) = (3 )</line> | |
<line x_offset="275.04" y_offset="125.99" spacing="-11.97">0 0593..</line> | |
<line x_offset="183.0" y_offset="125.2" spacing="-7.18">1</line> | |
<line x_offset="254.04" y_offset="124.12" spacing="-6.89">1</line> | |
<line x_offset="238.68" y_offset="117.51" spacing="-13.84">− ≈</line> | |
<line x_offset="423.96" y_offset="66.23" spacing="39.32">(15)</line> | |
<line x_offset="423.96" y_offset="8.27" spacing="45.99">(16)</line> | |
<line x_offset="23.4" y_offset="110.15" spacing="-113.85">Substituting Equations (13), (14) and (5) in Equation (9) yields our | |
final expression</line> | |
<line x_offset="336.24" y_offset="94.2" spacing="3.99">x</line> | |
<line x_offset="78.84" y_offset="72.16" spacing="14.07">2</line> | |
<line x_offset="71.76" y_offset="66.24" spacing="-6.04">σ τ</line> | |
<line x_offset="83.64" y_offset="66.23" spacing="-11.96">( ) =</line> | |
<line x_offset="78.36" y_offset="64.24" spacing="-5.98">x</line> | |
<line x_offset="88.44" y_offset="41.01" spacing="-13.62">(</line> | |
<line x_offset="102.48" y_offset="38.27" spacing="-9.22">=</line> | |
<line x_offset="0.0" y_offset="94.19" spacing="-67.89">for the variance of local process intensity for square zones of side | |
:</line> | |
<line x_offset="128.16" y_offset="74.28" spacing="7.95">N</line> | |
<line x_offset="116.88" y_offset="74.27" spacing="-11.96">3</line> | |
<line x_offset="138.36" y_offset="46.31" spacing="15.99">τ¯</line> | |
<line x_offset="138.24" y_offset="30.0" spacing="4.35">x</line> | |
<line x_offset="134.4" y_offset="62.44" spacing="-40.41">2</line> | |
<line x_offset="116.28" y_offset="58.08" spacing="-7.6">π x</line> | |
<line x_offset="122.16" y_offset="46.31" spacing="-0.2">3</line> | |
<line x_offset="129.12" y_offset="28.12" spacing="10.22">1</line> | |
<line x_offset="128.04" y_offset="8.28" spacing="7.88">.</line> | |
<line x_offset="116.28" y_offset="28.92" spacing="-32.6">π l</line> | |
<line x_offset="116.4" y_offset="16.32" spacing="0.64">τ</line> | |
<line x_offset="117.0" y_offset="16.31" spacing="-11.96">¯</line> | |
<line x_offset="116.28" y_offset="0.0" spacing="4.35">x</line> | |
<component x="72.0" y="211.69" width="444.82" height="489.44" page="5" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.04" year_ratio="0.0" cap_ratio="0.09" | |
name_ratio="0.2773722627737226" word_count="137" lateness="0.3333333333333333" reference_score="8.33"> | |
<line x_offset="438.36" y_offset="127.45" spacing="0.0">τ</line> | |
<line x_offset="0.0" y_offset="127.44" spacing="-11.96">From the Central Limit Theorem, we expect the distribution of local | |
process intensity,</line> | |
<line x_offset="0.0" y_offset="111.48" spacing="3.99">to be well approximated by a Gaussian distribution if the expected number of | |
secants</line> | |
<line x_offset="438.48" y_offset="102.23" spacing="-27.59">(</line> | |
<line x_offset="120.72" y_offset="95.65" spacing="-5.38">x</line> | |
<line x_offset="438.12" y_offset="95.65" spacing="-11.96">x</line> | |
<line x_offset="0.0" y_offset="95.64" spacing="-11.96">in a square zone of side is sufficiently large. For low intensity processes | |
and at small</line> | |
<line x_offset="0.0" y_offset="79.68" spacing="3.99">we anticipate that the distribution of local process intensity will exhibit a | |
positive skew</line> | |
<line x_offset="282.84" y_offset="63.73" spacing="3.99">N</line> | |
<line x_offset="0.0" y_offset="63.72" spacing="-11.96">as a consequence of the underlying Poisson process for .</line> | |
<line x_offset="192.12" y_offset="47.77" spacing="3.99">τ</line> | |
<line x_offset="23.4" y_offset="47.76" spacing="-11.96">Derivation of the distribution of</line> | |
<line x_offset="202.56" y_offset="47.76" spacing="-11.97">has proved intractable, so here we estimate the</line> | |
<line x_offset="285.72" y_offset="41.51" spacing="-30.59">(</line> | |
<line x_offset="0.0" y_offset="31.8" spacing="-2.26">skewness of the distribution by considering a Poisson process of secants in a | |
unit square.</line> | |
<line x_offset="192.36" y_offset="22.55" spacing="-27.59">(</line> | |
<line x_offset="135.12" y_offset="15.85" spacing="-5.26">τ x</line> | |
<line x_offset="0.0" y_offset="15.84" spacing="-11.96">The influence of changing ¯ or is therefore captured entirely by | |
varying the expected</line> | |
<line x_offset="200.16" y_offset="3.0" spacing="0.87">¯</line> | |
<line x_offset="196.8" y_offset="0.01" spacing="-8.97">N</line> | |
<line x_offset="0.0" y_offset="0.0" spacing="-11.96">number of secants in the unit square, . From Equations (5) and (15), the mean | |
and</line> | |
<component x="72.0" y="34.56" width="445.12" height="139.41" page="5" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="7.3" font="LRQCZG+TimesNewRomanPSMT" letter_ratio="1.0" year_ratio="0.0" cap_ratio="0.0" name_ratio="0" | |
word_count="1" lateness="0.4" reference_score="2.47"> | |
<line x_offset="0.0" y_offset="0.0" spacing="0.0">0.4</line> | |
<component x="196.39" y="693.86" width="10.02" height="7.3" page="6" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.09" year_ratio="0.0" cap_ratio="0.04" | |
name_ratio="0.18269230769230768" word_count="312" lateness="0.4666666666666667" reference_score="9.24"> | |
<line x_offset="255.24" y_offset="436.69" spacing="0.0">γ τ</line> | |
<line x_offset="23.4" y_offset="436.68" spacing="-11.96">The skewness of the local process intensity, ( ), of the simulation data | |
arising</line> | |
<line x_offset="261.36" y_offset="435.89" spacing="-7.18">1</line> | |
<line x_offset="103.68" y_offset="420.73" spacing="3.2">N</line> | |
<line x_offset="0.0" y_offset="420.72" spacing="-11.96">from different input</line> | |
<line x_offset="117.72" y_offset="420.72" spacing="-11.97">is plotted against that obtained using Equation (18) in Figure | |
2.</line> | |
<line x_offset="270.84" y_offset="411.47" spacing="-27.59">(</line> | |
<line x_offset="180.6" y_offset="404.77" spacing="-5.26">N</line> | |
<line x_offset="195.84" y_offset="404.76" spacing="-11.96">input to the simulation and the broken line has</line> | |
<line x_offset="0.0" y_offset="404.76" spacing="-11.97">Data labels represent the value of</line> | |
<line x_offset="0.0" y_offset="388.8" spacing="3.99">unit gradient. A linear regression on the data has gradient 0.9994 with | |
coefficient of</line> | |
<line x_offset="84.36" y_offset="378.29" spacing="2.54">2</line> | |
<line x_offset="78.72" y_offset="372.97" spacing="-6.64">r</line> | |
<line x_offset="110.64" y_offset="372.97" spacing="-11.96">.</line> | |
<line x_offset="0.0" y_offset="372.96" spacing="-11.96">determination, = 0 9997.</line> | |
<line x_offset="23.4" y_offset="357.0" spacing="3.99">Histograms of the local process intensity arising from the simulations are | |
plotted in</line> | |
<line x_offset="66.36" y_offset="344.04" spacing="0.99">¯</line> | |
<line x_offset="63.0" y_offset="341.05" spacing="-8.97">N ,</line> | |
<line x_offset="0.0" y_offset="341.04" spacing="-11.96">Figure 3 for = 10 20 and 50. To approximate the probability density of the | |
data, the</line> | |
<line x_offset="0.0" y_offset="325.08" spacing="3.99">heights of the bars are given by the frequency divided by the bin width. The | |
solid lines</line> | |
<line x_offset="0.0" y_offset="309.12" spacing="3.99">represent the probability densities of skew-normal distributions fitted by a | |
least-squares</line> | |
<line x_offset="0.0" y_offset="293.16" spacing="3.99">method to the cumulative data. The probability density of the skew-normal | |
distribution</line> | |
<line x_offset="0.0" y_offset="277.32" spacing="3.87">is [38]</line> | |
<line x_offset="145.56" y_offset="262.03" spacing="9.32">2</line> | |
<line x_offset="126.36" y_offset="260.93" spacing="-3.29">τ m(</line> | |
<line x_offset="123.48" y_offset="259.51" spacing="-4.55">(</line> | |
<line x_offset="142.68" y_offset="259.51" spacing="-5.98">)</line> | |
<line x_offset="206.4" y_offset="257.28" spacing="-3.53">(</line> | |
<line x_offset="130.44" y_offset="255.33" spacing="-5.37">−</line> | |
<line x_offset="182.4" y_offset="255.29" spacing="-7.92">α (m τ)</line> | |
<line x_offset="138.0" y_offset="253.03" spacing="-3.72">2</line> | |
<line x_offset="134.52" y_offset="252.77" spacing="-3.97">s</line> | |
<line x_offset="130.92" y_offset="251.35" spacing="-4.55">2</line> | |
<line x_offset="199.56" y_offset="249.67" spacing="-9.45">−</line> | |
<line x_offset="115.68" y_offset="249.31" spacing="-10.77">−</line> | |
<line x_offset="110.28" y_offset="248.53" spacing="-11.18">e</line> | |
<line x_offset="153.48" y_offset="248.52" spacing="-11.96">erfc</line> | |
<line x_offset="190.92" y_offset="245.47" spacing="-8.08">√</line> | |
<line x_offset="198.0" y_offset="244.49" spacing="-6.99">2s</line> | |
<line x_offset="215.28" y_offset="236.63" spacing="-28.98">(</line> | |
<line x_offset="174.0" y_offset="236.63" spacing="-36.85">(</line> | |
<line x_offset="71.76" y_offset="236.05" spacing="-11.38">g τ</line> | |
<line x_offset="231.48" y_offset="236.05" spacing="-11.95">,</line> | |
<line x_offset="77.88" y_offset="236.04" spacing="-11.96">( ) =</line> | |
<line x_offset="423.96" y_offset="236.04" spacing="-11.97">(19)</line> | |
<line x_offset="150.12" y_offset="227.92" spacing="-12.33">√</line> | |
<line x_offset="168.0" y_offset="226.57" spacing="-10.6">π s</line> | |
<line x_offset="160.08" y_offset="226.56" spacing="-11.96">2</line> | |
<line x_offset="82.68" y_offset="210.83" spacing="-21.11">(</line> | |
<line x_offset="57.48" y_offset="206.05" spacing="-7.18">ζ</line> | |
<line x_offset="0.0" y_offset="206.04" spacing="-11.96">where erfc( ) is the complementary error function. The mean, variance and | |
skewness</line> | |
<line x_offset="0.0" y_offset="190.08" spacing="3.99">are given by</line> | |
<line x_offset="155.04" y_offset="171.4" spacing="-1.77">√</line> | |
<line x_offset="172.8" y_offset="169.93" spacing="-10.48">α s</line> | |
<line x_offset="165.0" y_offset="169.92" spacing="-11.96">2</line> | |
<line x_offset="114.84" y_offset="161.89" spacing="-3.93">m</line> | |
<line x_offset="71.76" y_offset="161.88" spacing="-11.96">τ¯</line> | |
<line x_offset="102.36" y_offset="161.88" spacing="-11.97">= +</line> | |
<line x_offset="197.52" y_offset="156.77" spacing="-2.86">2</line> | |
<line x_offset="159.72" y_offset="153.76" spacing="-17.44">√</line> | |
<line x_offset="140.64" y_offset="152.44" spacing="-19.12">√</line> | |
<line x_offset="150.6" y_offset="152.41" spacing="-11.92">π</line> | |
<line x_offset="189.96" y_offset="152.41" spacing="-11.96">α</line> | |
<line x_offset="169.68" y_offset="152.4" spacing="-11.96">1 +</line> | |
<line x_offset="178.08" y_offset="141.41" spacing="3.02">2</line> | |
<line x_offset="170.52" y_offset="136.09" spacing="-6.64">α</line> | |
<line x_offset="162.6" y_offset="136.08" spacing="-11.96">2</line> | |
<line x_offset="215.52" y_offset="133.85" spacing="-5.74">2</line> | |
<line x_offset="78.84" y_offset="133.85" spacing="-7.97">2</line> | |
<line x_offset="210.0" y_offset="127.93" spacing="-6.04">s</line> | |
<line x_offset="71.76" y_offset="127.93" spacing="-11.95">σ τ</line> | |
<line x_offset="125.64" y_offset="127.92" spacing="-11.96">1</line> | |
<line x_offset="83.52" y_offset="127.92" spacing="-11.97">( ) =</line> | |
<line x_offset="188.76" y_offset="124.25" spacing="-4.3">2</line> | |
<line x_offset="147.24" y_offset="119.77" spacing="-7.48">π</line> | |
<line x_offset="181.2" y_offset="119.77" spacing="-11.96">α</line> | |
<line x_offset="156.36" y_offset="119.76" spacing="-11.96">(1 + )</line> | |
<line x_offset="199.2" y_offset="119.63" spacing="-36.71">(</line> | |
<line x_offset="116.76" y_offset="119.63" spacing="-36.85">(</line> | |
<line x_offset="134.16" y_offset="119.44" spacing="-20.26">−</line> | |
<line x_offset="189.72" y_offset="107.09" spacing="4.39">3</line> | |
<line x_offset="125.64" y_offset="103.12" spacing="-16.48">√</line> | |
<line x_offset="88.32" y_offset="102.71" spacing="-36.43">(</line> | |
<line x_offset="168.48" y_offset="101.77" spacing="-11.02">π α</line> | |
<line x_offset="135.6" y_offset="101.76" spacing="-11.96">2 (4 )</line> | |
<line x_offset="71.76" y_offset="93.73" spacing="-3.93">γ τ</line> | |
<line x_offset="82.56" y_offset="93.72" spacing="-11.96">( ) =</line> | |
<line x_offset="156.6" y_offset="93.28" spacing="-20.01">−</line> | |
<line x_offset="77.88" y_offset="92.93" spacing="-7.61">1</line> | |
<line x_offset="198.72" y_offset="92.59" spacing="-5.64">3</line> | |
<line x_offset="188.28" y_offset="86.57" spacing="-1.95">2</line> | |
<line x_offset="198.72" y_offset="86.23" spacing="-5.64">2</line> | |
<line x_offset="120.6" y_offset="82.09" spacing="-7.82">π π</line> | |
<line x_offset="180.72" y_offset="82.09" spacing="-11.96">α</line> | |
<line x_offset="116.04" y_offset="82.08" spacing="-11.96">( + (</line> | |
<line x_offset="168.24" y_offset="82.08" spacing="-11.97">2) )</line> | |
<line x_offset="156.36" y_offset="73.6" spacing="-11.97">−</line> | |
<line x_offset="87.36" y_offset="68.51" spacing="-31.75">(</line> | |
<line x_offset="0.0" y_offset="63.84" spacing="-7.3">respectively.</line> | |
<line x_offset="23.4" y_offset="47.88" spacing="3.99">As anticipated from the skewness values plotted in Figure 2, the | |
distributions</line> | |
<line x_offset="384.48" y_offset="34.92" spacing="0.99">¯</line> | |
<line x_offset="381.12" y_offset="31.93" spacing="-8.97">N</line> | |
<line x_offset="0.0" y_offset="31.92" spacing="-11.96">are increasingly well approximated by a Gaussian probability density | |
as</line> | |
<line x_offset="396.48" y_offset="31.92" spacing="-11.97">increases.</line> | |
<line x_offset="37.8" y_offset="18.96" spacing="0.99">¯</line> | |
<line x_offset="34.44" y_offset="15.97" spacing="-8.97">N</line> | |
<line x_offset="0.0" y_offset="15.96" spacing="-11.96">When is greater than about 50, the skewness is negligible and the Gaussian | |
can be</line> | |
<line x_offset="0.0" y_offset="0.0" spacing="3.99">assumed to describe the distribution of local process intensity well.</line> | |
<component x="72.0" y="58.44" width="444.82" height="448.65" page="7" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.08" year_ratio="0.0" cap_ratio="0.03" | |
name_ratio="0.16666666666666666" word_count="372" lateness="0.5333333333333333" reference_score="9.47"> | |
<line x_offset="0.0" y_offset="415.2" spacing="0.0">We proceed assuming the distribution of local process intensity to be Gaussian | |
with</line> | |
<line x_offset="137.52" y_offset="399.92" spacing="4.42">cf.</line> | |
<line x_offset="238.32" y_offset="399.92" spacing="-10.86">i.e.</line> | |
<line x_offset="31.2" y_offset="399.37" spacing="-11.41">τ</line> | |
<line x_offset="110.16" y_offset="399.37" spacing="-11.96">τ /x</line> | |
<line x_offset="0.0" y_offset="399.36" spacing="-11.96">mean ¯ and variance ¯ ( Equation (16)),</line> | |
<line x_offset="187.2" y_offset="383.83" spacing="9.56">2</line> | |
<line x_offset="170.52" y_offset="382.8" spacing="-3.29">(</line> | |
<line x_offset="161.88" y_offset="382.73" spacing="-4.15">x τ τ</line> | |
<line x_offset="167.4" y_offset="381.31" spacing="-4.55">( ¯)</line> | |
<line x_offset="130.56" y_offset="378.97" spacing="-9.62">x</line> | |
<line x_offset="174.36" y_offset="377.13" spacing="-5.48">−</line> | |
<line x_offset="177.0" y_offset="375.65" spacing="-2.74">τ</line> | |
<line x_offset="172.08" y_offset="374.23" spacing="-4.55">2 ¯</line> | |
<line x_offset="154.08" y_offset="371.23" spacing="-8.13">−</line> | |
<line x_offset="71.76" y_offset="370.93" spacing="-11.66">g τ</line> | |
<line x_offset="148.68" y_offset="370.93" spacing="-11.96">e</line> | |
<line x_offset="200.88" y_offset="370.93" spacing="-11.96">.</line> | |
<line x_offset="77.88" y_offset="370.92" spacing="-11.96">( ) =</line> | |
<line x_offset="423.96" y_offset="370.92" spacing="-11.97">(20)</line> | |
<line x_offset="109.08" y_offset="363.23" spacing="-29.15">(</line> | |
<line x_offset="130.08" y_offset="362.65" spacing="-11.38">π τ</line> | |
<line x_offset="122.16" y_offset="362.64" spacing="-11.96">2 ¯</line> | |
<line x_offset="160.56" y_offset="349.13" spacing="5.54">0</line> | |
<line x_offset="274.32" y_offset="346.97" spacing="-5.81">6</line> | |
<line x_offset="82.68" y_offset="345.71" spacing="-35.58">(</line> | |
<line x_offset="95.64" y_offset="341.65" spacing="-7.9">τ x ></line> | |
<line x_offset="175.8" y_offset="341.65" spacing="-11.96">g τ τ <</line> | |
<line x_offset="0.0" y_offset="341.64" spacing="-11.96">We note that for ¯</line> | |
<line x_offset="131.76" y_offset="341.64" spacing="-11.97">20,</line> | |
<line x_offset="181.92" y_offset="341.64" spacing="-11.97">( ) d</line> | |
<line x_offset="233.28" y_offset="341.64" spacing="-11.97">4 10 ; accordingly, truncation of the</line> | |
<line x_offset="267.72" y_offset="341.35" spacing="-10.84">−</line> | |
<line x_offset="242.88" y_offset="333.16" spacing="-12.26">×</line> | |
<line x_offset="158.28" y_offset="332.83" spacing="-10.79">−∞</line> | |
<line x_offset="152.64" y_offset="326.03" spacing="-30.04">(</line> | |
<line x_offset="137.4" y_offset="325.69" spacing="-11.62">τ <</line> | |
<line x_offset="0.0" y_offset="325.68" spacing="-11.96">distribution such that 0</line> | |
<line x_offset="175.32" y_offset="325.68" spacing="-11.97">is unnecessary for practical purposes.</line> | |
<line x_offset="124.68" y_offset="317.2" spacing="-11.97">≤ ∞</line> | |
<line x_offset="186.72" y_offset="316.43" spacing="-36.07">( (</line> | |
<line x_offset="23.4" y_offset="309.72" spacing="-5.26">From Equation (1), we expect the local average pore area to be</line> | |
<line x_offset="137.52" y_offset="300.47" spacing="-27.59">(</line> | |
<line x_offset="96.84" y_offset="294.61" spacing="-6.1">π</line> | |
<line x_offset="114.96" y_offset="286.57" spacing="-3.91">.</line> | |
<line x_offset="71.76" y_offset="286.57" spacing="-11.96">a</line> | |
<line x_offset="423.96" y_offset="286.56" spacing="-11.96">(21)</line> | |
<line x_offset="81.24" y_offset="286.56" spacing="-11.97">=</line> | |
<line x_offset="101.16" y_offset="282.77" spacing="-4.18">2</line> | |
<line x_offset="94.8" y_offset="278.29" spacing="-7.48">τ</line> | |
<line x_offset="0.0" y_offset="263.04" spacing="3.29">Inevitably, when a network is partitioned into contiguous square zones, some | |
polygons</line> | |
<line x_offset="71.52" y_offset="261.35" spacing="-35.15">(</line> | |
<line x_offset="95.04" y_offset="253.07" spacing="-28.57">(</line> | |
<line x_offset="0.0" y_offset="247.08" spacing="-5.98">intersect the perimeter of the zone. The expected number of polygons | |
intersecting the</line> | |
<line x_offset="398.04" y_offset="234.36" spacing="0.75">¯</line> | |
<line x_offset="184.68" y_offset="231.13" spacing="-8.73">x</line> | |
<line x_offset="327.0" y_offset="231.13" spacing="-11.96">n</line> | |
<line x_offset="383.52" y_offset="231.13" spacing="-11.96">x/d</line> | |
<line x_offset="429.72" y_offset="231.13" spacing="-11.96">x τ</line> | |
<line x_offset="0.0" y_offset="231.12" spacing="-11.96">perimeter of a square zone of side can be approximated as</line> | |
<line x_offset="361.2" y_offset="231.12" spacing="-11.97">= 4</line> | |
<line x_offset="407.4" y_offset="231.12" spacing="-11.97">= 4 ¯</line> | |
<line x_offset="333.96" y_offset="230.33" spacing="-7.18">perim</line> | |
<line x_offset="361.92" y_offset="220.61" spacing="1.75">2</line> | |
<line x_offset="410.64" y_offset="220.61" spacing="-7.97">2 2</line> | |
<line x_offset="306.96" y_offset="215.17" spacing="-6.52">n</line> | |
<line x_offset="355.32" y_offset="215.17" spacing="-11.96">x /a</line> | |
<line x_offset="404.04" y_offset="215.17" spacing="-11.96">x τ /π</line> | |
<line x_offset="0.0" y_offset="215.16" spacing="-11.96">and the expected number of polygons in the square is</line> | |
<line x_offset="338.16" y_offset="215.16" spacing="-11.97">= ¯ = ¯ .</line> | |
<line x_offset="313.92" y_offset="214.37" spacing="-7.18">area</line> | |
<line x_offset="0.0" y_offset="199.32" spacing="3.08">So, the expected fraction of polygons intersecting the perimeter of the | |
square is</line> | |
<line x_offset="326.16" y_offset="188.69" spacing="2.66">1</line> | |
<line x_offset="78.72" y_offset="183.37" spacing="-6.64">n /n</line> | |
<line x_offset="166.08" y_offset="183.37" spacing="-11.96">π/ τ x</line> | |
<line x_offset="252.48" y_offset="183.37" spacing="-11.96">τ</line> | |
<line x_offset="360.96" y_offset="183.37" spacing="-11.96">x</line> | |
<line x_offset="0.0" y_offset="183.36" spacing="-11.96">approximately</line> | |
<line x_offset="142.8" y_offset="183.36" spacing="-11.97">= 4 (¯ ). When ¯ = 100 mm and = 1 mm this</line> | |
<line x_offset="319.56" y_offset="183.07" spacing="-10.84">−</line> | |
<line x_offset="85.68" y_offset="182.57" spacing="-7.47">perim area</line> | |
<line x_offset="63.84" y_offset="167.41" spacing="3.2">.</line> | |
<line x_offset="114.12" y_offset="167.41" spacing="-11.96">n ></line> | |
<line x_offset="0.0" y_offset="167.4" spacing="-11.96">fraction is 0 125 and</line> | |
<line x_offset="157.8" y_offset="167.4" spacing="-11.97">3000 so it is reasonable to assume that Equation (21)</line> | |
<line x_offset="121.08" y_offset="166.61" spacing="-7.18">area</line> | |
<line x_offset="0.0" y_offset="151.44" spacing="3.2">provides a good measure of the local average polygon area.</line> | |
<line x_offset="23.4" y_offset="135.48" spacing="3.99">The probability density of local average pore area is obtained by a simple | |
variable</line> | |
<line x_offset="0.0" y_offset="119.52" spacing="3.99">transform of Equation (20):</line> | |
<line x_offset="122.28" y_offset="100.33" spacing="7.23">τ</line> | |
<line x_offset="115.8" y_offset="100.32" spacing="-11.96">d˜</line> | |
<line x_offset="137.88" y_offset="92.29" spacing="-3.93">g</line> | |
<line x_offset="160.44" y_offset="92.29" spacing="-11.96">π/a</line> | |
<line x_offset="144.0" y_offset="92.28" spacing="-11.96">(</line> | |
<line x_offset="173.52" y_offset="92.28" spacing="-11.97">˜)</line> | |
<line x_offset="71.76" y_offset="92.28" spacing="-11.97">p a(˜) =</line> | |
<line x_offset="129.84" y_offset="84.35" spacing="-28.91">(</line> | |
<line x_offset="110.64" y_offset="84.35" spacing="-36.85">(</line> | |
<line x_offset="122.4" y_offset="84.13" spacing="-11.74">a</line> | |
<line x_offset="115.92" y_offset="84.12" spacing="-11.96">d˜</line> | |
<line x_offset="148.56" y_offset="77.87" spacing="-30.59">(</line> | |
<line x_offset="129.84" y_offset="77.27" spacing="-36.25">(</line> | |
<line x_offset="110.64" y_offset="77.27" spacing="-36.85">(</line> | |
<line x_offset="208.2" y_offset="71.47" spacing="-0.18">2</line> | |
<line x_offset="179.64" y_offset="70.37" spacing="-3.13">π a τ</line> | |
<line x_offset="165.24" y_offset="70.37" spacing="-4.23">x</line> | |
<line x_offset="129.84" y_offset="70.07" spacing="-36.54">(</line> | |
<line x_offset="110.64" y_offset="70.07" spacing="-36.85">(</line> | |
<line x_offset="189.96" y_offset="69.81" spacing="-7.06">√</line> | |
<line x_offset="173.64" y_offset="69.09" spacing="-6.6">√</line> | |
<line x_offset="196.08" y_offset="68.95" spacing="-5.83">˜ ¯)</line> | |
<line x_offset="170.76" y_offset="68.95" spacing="-5.98">(</line> | |
<line x_offset="132.0" y_offset="66.61" spacing="-9.62">x</line> | |
<line x_offset="184.2" y_offset="64.77" spacing="-5.48">−</line> | |
<line x_offset="186.6" y_offset="63.17" spacing="-2.62">a τ</line> | |
<line x_offset="129.84" y_offset="62.87" spacing="-36.54">(</line> | |
<line x_offset="110.64" y_offset="62.87" spacing="-36.85">(</line> | |
<line x_offset="181.68" y_offset="61.75" spacing="-4.86">2 ˜ ¯</line> | |
<line x_offset="157.44" y_offset="58.75" spacing="-8.13">−</line> | |
<line x_offset="221.88" y_offset="58.45" spacing="-11.66">.</line> | |
<line x_offset="152.04" y_offset="58.45" spacing="-11.96">e</line> | |
<line x_offset="423.96" y_offset="58.44" spacing="-11.96">(22)</line> | |
<line x_offset="96.12" y_offset="58.44" spacing="-11.97">=</line> | |
<line x_offset="135.84" y_offset="54.77" spacing="-4.3">3</line> | |
<line x_offset="108.6" y_offset="50.75" spacing="-32.82">(</line> | |
<line x_offset="129.72" y_offset="50.29" spacing="-11.5">a τ</line> | |
<line x_offset="121.8" y_offset="50.28" spacing="-11.96">8 ˜ ¯</line> | |
<line x_offset="23.4" y_offset="31.8" spacing="6.51">The probability density given by Equation (22) is plotted for a range of | |
process</line> | |
<line x_offset="59.04" y_offset="15.85" spacing="3.99">τ</line> | |
<line x_offset="200.88" y_offset="15.85" spacing="-11.96">x</line> | |
<line x_offset="0.0" y_offset="15.84" spacing="-11.96">intensities, ¯ and scales of inspection, in Figure 4. As anticipated, | |
the distribution</line> | |
<line x_offset="291.96" y_offset="0.01" spacing="3.87">τ</line> | |
<line x_offset="329.76" y_offset="0.01" spacing="-11.96">x</line> | |
<line x_offset="0.0" y_offset="0.0" spacing="-11.96">exhibits a positive skew and narrows with increasing ¯ and . A | |
consequence of</line> | |
<component x="72.0" y="38.88" width="444.82" height="427.17" page="8" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="36.85" font="IWMANX+CMEX10" letter_ratio="0.13" year_ratio="0.0" cap_ratio="0.1" | |
name_ratio="0.11210762331838565" word_count="446" lateness="0.6" reference_score="11.66"> | |
<line x_offset="0.0" y_offset="636.13" spacing="0.0">neglecting skewness and using the approximation given by Equation (18) for | |
the variance</line> | |
<line x_offset="0.0" y_offset="620.17" spacing="3.99">of local average process intensity is that the expected local average pore | |
area obtained as</line> | |
<line x_offset="228.36" y_offset="609.54" spacing="2.66">2</line> | |
<line x_offset="363.0" y_offset="609.54" spacing="-7.97">1</line> | |
<line x_offset="30.12" y_offset="606.08" spacing="-7.67">∞</line> | |
<line x_offset="0.0" y_offset="604.22" spacing="-10.1">a</line> | |
<line x_offset="209.04" y_offset="604.22" spacing="-11.96">π/τ</line> | |
<line x_offset="294.72" y_offset="604.22" spacing="-11.96">τ</line> | |
<line x_offset="394.56" y_offset="604.22" spacing="-11.96">x</line> | |
<line x_offset="0.12" y_offset="604.21" spacing="-11.96">¯ =</line> | |
<line x_offset="41.04" y_offset="604.21" spacing="-11.97">a p a a˜ (˜) d˜ is slightly greater than ¯ though | |
for ¯ 200 mm and</line> | |
<line x_offset="417.36" y_offset="604.21" spacing="-11.97">1 mm</line> | |
<line x_offset="356.4" y_offset="603.92" spacing="-10.84">−</line> | |
<line x_offset="27.72" y_offset="601.02" spacing="-5.07">0</line> | |
<line x_offset="304.56" y_offset="595.74" spacing="-15.16">≥</line> | |
<line x_offset="404.64" y_offset="595.74" spacing="-20.44">≥</line> | |
<line x_offset="22.08" y_offset="588.6" spacing="-29.71">(</line> | |
<line x_offset="0.0" y_offset="588.25" spacing="-11.62">the error is less than 2 %. The variance of local average pore area, is | |
given by</line> | |
<line x_offset="126.48" y_offset="570.92" spacing="6.2">∞</line> | |
<line x_offset="78.84" y_offset="568.38" spacing="-5.43">2</line> | |
<line x_offset="171.48" y_offset="568.38" spacing="-7.97">2</line> | |
<line x_offset="71.76" y_offset="562.47" spacing="-6.04">σ a</line> | |
<line x_offset="140.04" y_offset="562.47" spacing="-11.96">a a p a a .</line> | |
<line x_offset="83.52" y_offset="562.45" spacing="-11.96">(˜) =</line> | |
<line x_offset="135.48" y_offset="562.45" spacing="-11.97">(˜ ¯) (˜) d˜</line> | |
<line x_offset="423.96" y_offset="562.45" spacing="-11.97">(23)</line> | |
<line x_offset="148.8" y_offset="553.98" spacing="-11.97">−</line> | |
<line x_offset="114.6" y_offset="553.44" spacing="-36.31">(</line> | |
<line x_offset="121.2" y_offset="552.66" spacing="-7.19">0</line> | |
<line x_offset="0.0" y_offset="536.29" spacing="4.4">It has not been possible to obtain a closed form solution to this integral | |
though an</line> | |
<line x_offset="0.0" y_offset="520.45" spacing="3.87">analytic estimate can be obtained through consideration of Equations (5) and | |
(21).</line> | |
<line x_offset="0.0" y_offset="504.49" spacing="3.99">From Equation (5) we expect the local average process intensity to be</line> | |
<line x_offset="107.64" y_offset="486.01" spacing="6.51">¯</line> | |
<line x_offset="95.04" y_offset="482.9" spacing="-8.85">N l</line> | |
<line x_offset="111.24" y_offset="482.1" spacing="-7.17">1</line> | |
<line x_offset="121.08" y_offset="474.75" spacing="-4.6">.</line> | |
<line x_offset="71.76" y_offset="474.75" spacing="-11.95">τ</line> | |
<line x_offset="423.96" y_offset="474.73" spacing="-11.96">(24)</line> | |
<line x_offset="81.48" y_offset="474.73" spacing="-11.97">=</line> | |
<line x_offset="102.24" y_offset="466.59" spacing="-3.81">x</line> | |
<line x_offset="98.04" y_offset="460.68" spacing="-30.94">(</line> | |
<line x_offset="0.0" y_offset="450.61" spacing="-1.9">Substituting in Equation (21), we obtain</line> | |
<line x_offset="72.0" y_offset="449.52" spacing="-35.75">(</line> | |
<line x_offset="110.52" y_offset="436.5" spacing="5.05">2</line> | |
<line x_offset="94.8" y_offset="431.19" spacing="-6.64">π x</line> | |
<line x_offset="124.44" y_offset="431.17" spacing="-11.96">1</line> | |
<line x_offset="144.0" y_offset="423.15" spacing="-3.93">,</line> | |
<line x_offset="71.76" y_offset="423.15" spacing="-11.96">a</line> | |
<line x_offset="423.96" y_offset="423.13" spacing="-11.96">(25)</line> | |
<line x_offset="71.88" y_offset="423.13" spacing="-11.97">˜ =</line> | |
<line x_offset="104.52" y_offset="419.58" spacing="-4.42">2</line> | |
<line x_offset="100.68" y_offset="417.61" spacing="-10.0">¯</line> | |
<line x_offset="130.2" y_offset="417.18" spacing="-7.54">2</line> | |
<line x_offset="100.8" y_offset="414.51" spacing="-9.28">l</line> | |
<line x_offset="119.64" y_offset="412.71" spacing="-10.16">N</line> | |
<line x_offset="104.28" y_offset="412.62" spacing="-7.89">1</line> | |
<line x_offset="0.0" y_offset="396.25" spacing="4.4">such that</line> | |
<line x_offset="122.64" y_offset="390.6" spacing="-31.19">(</line> | |
<line x_offset="155.04" y_offset="385.14" spacing="-2.51">2</line> | |
<line x_offset="140.28" y_offset="383.22" spacing="-6.05">2</line> | |
<line x_offset="124.68" y_offset="377.91" spacing="-6.64">π x</line> | |
<line x_offset="78.84" y_offset="375.66" spacing="-5.73">2</line> | |
<line x_offset="170.88" y_offset="375.66" spacing="-7.97">2</line> | |
<line x_offset="202.56" y_offset="375.66" spacing="-7.97">2</line> | |
<line x_offset="71.76" y_offset="369.75" spacing="-6.04">σ a</line> | |
<line x_offset="163.8" y_offset="369.75" spacing="-11.95">σ /N .</line> | |
<line x_offset="83.64" y_offset="369.73" spacing="-11.96">(˜) =</line> | |
<line x_offset="175.68" y_offset="369.73" spacing="-11.97">(1 )</line> | |
<line x_offset="423.96" y_offset="369.73" spacing="-11.97">(26)</line> | |
<line x_offset="78.36" y_offset="367.86" spacing="-6.1">x</line> | |
<line x_offset="170.4" y_offset="367.86" spacing="-7.97">x</line> | |
<line x_offset="134.4" y_offset="366.3" spacing="-6.41">2</line> | |
<line x_offset="130.56" y_offset="364.33" spacing="-10.0">¯</line> | |
<line x_offset="114.6" y_offset="361.44" spacing="-33.95">(</line> | |
<line x_offset="146.28" y_offset="361.44" spacing="-36.85">(</line> | |
<line x_offset="130.68" y_offset="361.22" spacing="-11.74">l</line> | |
<line x_offset="134.16" y_offset="359.22" spacing="-5.97">1</line> | |
<line x_offset="195.0" y_offset="347.52" spacing="-25.14">(</line> | |
<line x_offset="333.0" y_offset="344.94" spacing="-5.39">2</line> | |
<line x_offset="364.68" y_offset="344.94" spacing="-7.97">2</line> | |
<line x_offset="54.84" y_offset="339.62" spacing="-6.64">N</line> | |
<line x_offset="236.88" y_offset="339.62" spacing="-11.96">P N > σ /N</line> | |
<line x_offset="23.4" y_offset="339.61" spacing="-11.96">Now, is a Poisson variable and since ( = 0) 0, (1 ) is undefined.</line> | |
<line x_offset="332.52" y_offset="337.62" spacing="-5.98">x</line> | |
<line x_offset="114.24" y_offset="326.65" spacing="-1.0">¯</line> | |
<line x_offset="110.88" y_offset="323.67" spacing="-8.97">N</line> | |
<line x_offset="272.88" y_offset="323.67" spacing="-11.96">P N</line> | |
<line x_offset="0.0" y_offset="323.65" spacing="-11.96">Typically, we expect</line> | |
<line x_offset="126.12" y_offset="323.65" spacing="-11.97">to be sufficiently large that ( = 0) is negligible such that</line> | |
<line x_offset="57.84" y_offset="317.4" spacing="-30.59">(</line> | |
<line x_offset="253.56" y_offset="317.4" spacing="-36.85">(</line> | |
<line x_offset="357.0" y_offset="317.4" spacing="-36.85">(</line> | |
<line x_offset="9.24" y_offset="307.7" spacing="-2.26">< /N</line> | |
<line x_offset="0.0" y_offset="307.69" spacing="-11.96">0 1</line> | |
<line x_offset="60.0" y_offset="307.69" spacing="-11.97">1. A convenient approximation to the discrete Poisson probability | |
function</line> | |
<line x_offset="289.56" y_offset="301.44" spacing="-30.59">(</line> | |
<line x_offset="47.4" y_offset="299.22" spacing="-18.22">≤</line> | |
<line x_offset="423.96" y_offset="246.37" spacing="40.88">(27)</line> | |
<line x_offset="423.96" y_offset="147.49" spacing="86.91">(28)</line> | |
<line x_offset="339.84" y_offset="81.37" spacing="54.15">4)</line> | |
<line x_offset="423.96" y_offset="58.57" spacing="10.83">(29)</line> | |
<line x_offset="423.96" y_offset="8.41" spacing="38.19">(30)</line> | |
<line x_offset="0.0" y_offset="291.85" spacing="-295.41">is the probability density of a Gamma distributed continuous random | |
variable with</line> | |
<line x_offset="36.36" y_offset="285.6" spacing="-30.59">(</line> | |
<line x_offset="0.0" y_offset="275.89" spacing="-2.26">variance equal to the mean. This probability density is given by</line> | |
<line x_offset="128.16" y_offset="263.77" spacing="6.36">(</line> | |
<line x_offset="149.04" y_offset="261.78" spacing="-5.98">¯</line> | |
<line x_offset="146.64" y_offset="259.74" spacing="-5.93">N 1</line> | |
<line x_offset="126.0" y_offset="259.74" spacing="-7.97">N</line> | |
<line x_offset="114.0" y_offset="254.42" spacing="-6.64">e N</line> | |
<line x_offset="154.32" y_offset="254.12" spacing="-10.82">−</line> | |
<line x_offset="119.4" y_offset="254.12" spacing="-11.13">−</line> | |
<line x_offset="174.6" y_offset="246.39" spacing="-4.22">,</line> | |
<line x_offset="71.76" y_offset="246.39" spacing="-11.96">q N</line> | |
<line x_offset="77.4" y_offset="246.37" spacing="-11.96">( ) =</line> | |
<line x_offset="141.48" y_offset="240.97" spacing="-6.57">¯</line> | |
<line x_offset="138.12" y_offset="237.87" spacing="-8.85">N</line> | |
<line x_offset="126.24" y_offset="237.85" spacing="-11.96">Γ( )</line> | |
<line x_offset="139.08" y_offset="232.2" spacing="-31.19">(</line> | |
<line x_offset="84.84" y_offset="224.16" spacing="-28.81">(</line> | |
<line x_offset="230.04" y_offset="221.58" spacing="-5.39">2</line> | |
<line x_offset="185.52" y_offset="216.27" spacing="-6.64">ν /N</line> | |
<line x_offset="0.0" y_offset="216.25" spacing="-11.96">such that the probability density of = 1</line> | |
<line x_offset="238.68" y_offset="216.25" spacing="-11.97">is given by</line> | |
<line x_offset="222.48" y_offset="194.04" spacing="-14.63">(</line> | |
<line x_offset="122.4" y_offset="193.47" spacing="-11.38">N</line> | |
<line x_offset="115.92" y_offset="193.45" spacing="-11.96">d</line> | |
<line x_offset="71.76" y_offset="185.43" spacing="-3.93">r ν</line> | |
<line x_offset="142.2" y_offset="185.43" spacing="-11.96">q ν</line> | |
<line x_offset="77.4" y_offset="185.41" spacing="-11.96">( ) =</line> | |
<line x_offset="147.84" y_offset="185.41" spacing="-11.97">( )</line> | |
<line x_offset="110.76" y_offset="181.08" spacing="-32.51">(</line> | |
<line x_offset="134.16" y_offset="181.08" spacing="-36.85">(</line> | |
<line x_offset="124.44" y_offset="177.27" spacing="-8.14">ν</line> | |
<line x_offset="117.96" y_offset="177.25" spacing="-11.96">d</line> | |
<line x_offset="110.76" y_offset="173.88" spacing="-33.47">(</line> | |
<line x_offset="134.16" y_offset="173.88" spacing="-36.85">(</line> | |
<line x_offset="125.4" y_offset="171.24" spacing="-34.21">(</line> | |
<line x_offset="110.76" y_offset="166.8" spacing="-32.41">(</line> | |
<line x_offset="134.16" y_offset="166.8" spacing="-36.85">(</line> | |
<line x_offset="174.24" y_offset="162.9" spacing="-4.07">¯</line> | |
<line x_offset="130.32" y_offset="161.0" spacing="-9.23">√</line> | |
<line x_offset="137.4" y_offset="160.86" spacing="-7.83">ν (1+N/2)</line> | |
<line x_offset="121.92" y_offset="160.86" spacing="-7.97">1/</line> | |
<line x_offset="110.76" y_offset="159.6" spacing="-35.58">(</line> | |
<line x_offset="134.16" y_offset="159.6" spacing="-36.85">(</line> | |
<line x_offset="144.6" y_offset="155.55" spacing="-7.9">ν</line> | |
<line x_offset="109.92" y_offset="155.55" spacing="-11.96">e</line> | |
<line x_offset="151.08" y_offset="155.24" spacing="-10.82">−</line> | |
<line x_offset="115.32" y_offset="155.24" spacing="-11.13">−</line> | |
<line x_offset="110.76" y_offset="152.4" spacing="-34.0">(</line> | |
<line x_offset="134.16" y_offset="152.4" spacing="-36.85">(</line> | |
<line x_offset="96.24" y_offset="147.49" spacing="-7.06">=</line> | |
<line x_offset="156.48" y_offset="141.97" spacing="-6.45">¯</line> | |
<line x_offset="153.12" y_offset="138.99" spacing="-8.97">N</line> | |
<line x_offset="133.32" y_offset="138.97" spacing="-11.96">2 Γ( )</line> | |
<line x_offset="189.36" y_offset="121.93" spacing="5.07">¯</line> | |
<line x_offset="229.56" y_offset="121.93" spacing="-11.97">¯</line> | |
<line x_offset="139.92" y_offset="118.83" spacing="-8.85">ν / N N</line> | |
<line x_offset="0.0" y_offset="34.93" spacing="71.92">Such that</line> | |
<line x_offset="0.0" y_offset="118.81" spacing="-95.85">The distribution has mean ¯ = 1 (</line> | |
<line x_offset="211.2" y_offset="118.81" spacing="-11.97">1)(</line> | |
<line x_offset="251.4" y_offset="118.81" spacing="-11.97">2) and variance</line> | |
<line x_offset="199.2" y_offset="110.34" spacing="-11.97">− −</line> | |
<line x_offset="176.04" y_offset="103.32" spacing="-29.83">(</line> | |
<line x_offset="261.84" y_offset="103.32" spacing="-36.85">(</line> | |
<line x_offset="253.92" y_offset="100.93" spacing="-9.58">¯</line> | |
<line x_offset="242.76" y_offset="97.93" spacing="-8.97">4N</line> | |
<line x_offset="275.88" y_offset="97.93" spacing="-11.97">10</line> | |
<line x_offset="78.84" y_offset="95.82" spacing="-5.86">2</line> | |
<line x_offset="122.04" y_offset="95.82" spacing="-7.97">2</line> | |
<line x_offset="153.6" y_offset="95.82" spacing="-7.97">2</line> | |
<line x_offset="71.76" y_offset="89.91" spacing="-6.04">σ ν σ /N</line> | |
<line x_offset="145.92" y_offset="67.68" spacing="-14.62">(</line> | |
<line x_offset="78.84" y_offset="14.34" spacing="45.37">2</line> | |
<line x_offset="78.36" y_offset="6.42" spacing="-0.05">x</line> | |
<line x_offset="71.76" y_offset="8.43" spacing="-13.96">σ a</line> | |
<line x_offset="83.64" y_offset="8.41" spacing="-11.96">(˜)</line> | |
<line x_offset="83.52" y_offset="89.89" spacing="-93.45">( ) = (1 ) =</line> | |
<line x_offset="263.88" y_offset="89.46" spacing="-20.01">−</line> | |
<line x_offset="220.32" y_offset="85.86" spacing="-4.37">2</line> | |
<line x_offset="265.2" y_offset="85.86" spacing="-7.97">2</line> | |
<line x_offset="187.92" y_offset="84.37" spacing="-10.48">¯</line> | |
<line x_offset="232.92" y_offset="84.37" spacing="-11.97">¯</line> | |
<line x_offset="277.8" y_offset="84.37" spacing="-11.97">¯</line> | |
<line x_offset="318.0" y_offset="84.37" spacing="-11.97">¯</line> | |
<line x_offset="209.88" y_offset="81.37" spacing="-8.97">1) (</line> | |
<line x_offset="254.76" y_offset="81.37" spacing="-11.97">2) (</line> | |
<line x_offset="299.64" y_offset="81.37" spacing="-11.97">3)(</line> | |
<line x_offset="197.88" y_offset="72.9" spacing="-11.97">− − − −</line> | |
<line x_offset="288.72" y_offset="61.69" spacing="-0.76">¯</line> | |
<line x_offset="285.36" y_offset="58.59" spacing="-8.85">N</line> | |
<line x_offset="267.48" y_offset="58.57" spacing="-11.96">for</line> | |
<line x_offset="314.52" y_offset="58.57" spacing="-11.97">20</line> | |
<line x_offset="299.28" y_offset="50.1" spacing="-11.97">(</line> | |
<line x_offset="184.56" y_offset="81.39" spacing="-43.24">N N N N</line> | |
<line x_offset="180.0" y_offset="81.37" spacing="-11.96">(</line> | |
<line x_offset="191.52" y_offset="8.43" spacing="60.99">.</line> | |
<line x_offset="190.56" y_offset="54.66" spacing="-54.21">5</line> | |
<line x_offset="184.8" y_offset="66.73" spacing="-24.04">4</line> | |
<line x_offset="183.36" y_offset="53.17" spacing="1.59">¯</line> | |
<line x_offset="180.0" y_offset="50.19" spacing="-8.97">N</line> | |
<line x_offset="166.2" y_offset="50.1" spacing="-20.36">≈</line> | |
<line x_offset="177.0" y_offset="23.82" spacing="18.31">2</line> | |
<line x_offset="168.24" y_offset="0.0" spacing="-13.02">(</line> | |
<component x="72.0" y="53.03" width="444.84" height="648.1" page="9" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.09" year_ratio="0.0" cap_ratio="0.09" | |
name_ratio="0.19883040935672514" word_count="171" lateness="0.6666666666666666" reference_score="11.38"> | |
<line x_offset="88.32" y_offset="263.76" spacing="0.0">¯</line> | |
<line x_offset="84.96" y_offset="260.77" spacing="-8.97">N</line> | |
<line x_offset="0.0" y_offset="260.76" spacing="-11.96">Substituting for</line> | |
<line x_offset="99.48" y_offset="260.76" spacing="-11.97">from Equation (5) yields</line> | |
<line x_offset="130.92" y_offset="247.25" spacing="5.54">2</line> | |
<line x_offset="137.52" y_offset="245.04" spacing="-9.76">¯</line> | |
<line x_offset="137.52" y_offset="241.93" spacing="-8.85">l</line> | |
<line x_offset="123.84" y_offset="241.93" spacing="-11.96">π</line> | |
<line x_offset="115.92" y_offset="241.92" spacing="-11.96">4</line> | |
<line x_offset="141.0" y_offset="241.13" spacing="-7.18">1</line> | |
<line x_offset="78.84" y_offset="239.81" spacing="-6.65">2</line> | |
<line x_offset="154.8" y_offset="233.89" spacing="-6.04">.</line> | |
<line x_offset="71.76" y_offset="233.89" spacing="-11.96">σ a</line> | |
<line x_offset="423.96" y_offset="233.88" spacing="-11.96">(31)</line> | |
<line x_offset="83.52" y_offset="233.88" spacing="-11.97">(˜)</line> | |
<line x_offset="135.96" y_offset="230.09" spacing="-4.18">5</line> | |
<line x_offset="120.96" y_offset="225.61" spacing="-7.48">x τ</line> | |
<line x_offset="130.2" y_offset="225.6" spacing="-11.96">¯</line> | |
<line x_offset="102.12" y_offset="225.4" spacing="-20.25">≈</line> | |
<line x_offset="73.2" y_offset="215.57" spacing="1.87">2</line> | |
<line x_offset="30.84" y_offset="210.25" spacing="-6.64">a π/τ</line> | |
<line x_offset="0.0" y_offset="210.24" spacing="-11.96">Since ¯ = ¯ , it follows that the coefficient of variation of | |
local average pore area is</line> | |
<line x_offset="0.0" y_offset="194.28" spacing="3.99">approximated by</line> | |
<line x_offset="145.92" y_offset="176.4" spacing="5.91">¯</line> | |
<line x_offset="146.04" y_offset="173.17" spacing="-8.73">l</line> | |
<line x_offset="149.52" y_offset="172.37" spacing="-7.17">1</line> | |
<line x_offset="71.76" y_offset="165.13" spacing="-4.72">CV a</line> | |
<line x_offset="90.36" y_offset="165.12" spacing="-11.96">(˜) 2</line> | |
<line x_offset="129.48" y_offset="159.83" spacing="-31.55">(</line> | |
<line x_offset="142.56" y_offset="156.97" spacing="-9.1">x τ</line> | |
<line x_offset="151.8" y_offset="156.96" spacing="-11.96">¯</line> | |
<line x_offset="108.96" y_offset="156.64" spacing="-20.13">≈</line> | |
<line x_offset="132.36" y_offset="145.08" spacing="-0.4">2</line> | |
<line x_offset="156.84" y_offset="137.05" spacing="-3.93">.</line> | |
<line x_offset="423.96" y_offset="137.04" spacing="-11.96">(32)</line> | |
<line x_offset="122.76" y_offset="128.92" spacing="-12.33">√</line> | |
<line x_offset="108.96" y_offset="128.56" spacing="-20.08">≈</line> | |
<line x_offset="132.72" y_offset="127.93" spacing="-11.32">x τ</line> | |
<line x_offset="141.96" y_offset="127.92" spacing="-11.96">¯</line> | |
<line x_offset="0.0" y_offset="111.6" spacing="4.35">We observe that the influence of zone size and process intensity is coupled | |
such that the</line> | |
<line x_offset="345.84" y_offset="95.65" spacing="3.99">x τ</line> | |
<line x_offset="0.0" y_offset="95.64" spacing="-11.96">coefficient of variation depends only on the dimensionless product, ¯. | |
The coefficient</line> | |
<line x_offset="0.0" y_offset="79.68" spacing="3.99">of variation of local average pore area, as calculated via numerical | |
integration of</line> | |
<line x_offset="0.0" y_offset="63.84" spacing="3.87">Equation (23) is plotted against mean process intensity in Figure 5. The | |
solid lines</line> | |
<line x_offset="0.0" y_offset="47.88" spacing="3.99">represent the approximation given by Equation (32). We note that Schweers | |
and</line> | |
<line x_offset="370.56" y_offset="15.96" spacing="19.95">CV a(˜) plotted</line> | |
<line x_offset="0.0" y_offset="31.92" spacing="-27.93">Lo¨ffler [31] report a coefficient of variation of local flow velocity | |
through a porous</line> | |
<line x_offset="0.0" y_offset="15.96" spacing="3.99">nonwoven filter of 0.3 at the 0.5 mm scale, consistent with the values | |
of</line> | |
<line x_offset="0.0" y_offset="0.0" spacing="3.99">in Figure 5.</line> | |
<component x="72.0" y="215.04" width="444.82" height="275.73" page="10" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.03" year_ratio="0.0" cap_ratio="0.0" name_ratio="0.2734375" | |
word_count="128" lateness="0.6666666666666666" reference_score="8.75"> | |
<line x_offset="0.0" y_offset="127.56" spacing="0.0">Although the voids generated by random fiber processes are irregular convex | |
polygons,</line> | |
<line x_offset="0.0" y_offset="111.6" spacing="3.99">it is often convenient to characterize their dimensions by an equivalent | |
diameter, rather</line> | |
<line x_offset="0.0" y_offset="95.64" spacing="3.99">than by area. A good candidate for such a measure is the equivalent diameter | |
determined</line> | |
<line x_offset="0.0" y_offset="79.68" spacing="3.99">from the hydraulic radius and defined as the ratio of the area of a polygon | |
to its</line> | |
<line x_offset="0.0" y_offset="63.72" spacing="3.99">perimeter. Despite the established utility of this measure, to calculate it | |
for our system</line> | |
<line x_offset="0.0" y_offset="47.88" spacing="3.87">we would require knowledge of the joint probability density of polygon | |
perimeter and</line> | |
<line x_offset="0.0" y_offset="31.92" spacing="3.99">area, which is unknown. Two alternative measures have been employed | |
previously: the</line> | |
<line x_offset="0.0" y_offset="15.96" spacing="3.99">diameter of the largest circle that can be inscribed within a polygon [5, 12] | |
and the</line> | |
<line x_offset="0.0" y_offset="0.0" spacing="3.99">diameter of a circle with the same area as a polygon [1, 20]. The expected | |
diameter</line> | |
<component x="72.0" y="31.56" width="444.77" height="139.53" page="10" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.15" year_ratio="0.0" cap_ratio="0.11" | |
name_ratio="0.10526315789473684" word_count="57" lateness="0.7333333333333333" reference_score="12.78"> | |
<line x_offset="147.48" y_offset="137.79" spacing="0.0">x</line> | |
<line x_offset="116.04" y_offset="137.77" spacing="-11.96">1</line> | |
<line x_offset="73.8" y_offset="132.85" spacing="-7.05">˜</line> | |
<line x_offset="71.76" y_offset="129.63" spacing="-8.73">d</line> | |
<line x_offset="126.72" y_offset="129.61" spacing="-11.96">=</line> | |
<line x_offset="102.12" y_offset="129.61" spacing="-11.97">=</line> | |
<line x_offset="115.8" y_offset="121.47" spacing="-3.81">τ</line> | |
<line x_offset="140.28" y_offset="119.31" spacing="-9.8">N l</line> | |
<line x_offset="156.48" y_offset="118.5" spacing="-7.17">1</line> | |
<line x_offset="122.4" y_offset="109.38" spacing="1.15">2</line> | |
<line x_offset="115.8" y_offset="104.07" spacing="-6.64">x</line> | |
<line x_offset="78.84" y_offset="101.94" spacing="-5.85">2</line> | |
<line x_offset="137.4" y_offset="101.94" spacing="-7.97">2</line> | |
<line x_offset="90.24" y_offset="99.13" spacing="-9.16">˜</line> | |
<line x_offset="143.28" y_offset="97.08" spacing="-34.79">(</line> | |
<line x_offset="116.04" y_offset="96.24" spacing="-36.01">(</line> | |
<line x_offset="71.76" y_offset="96.03" spacing="-11.74">σ d</line> | |
<line x_offset="130.32" y_offset="96.03" spacing="-11.96">σ /N</line> | |
<line x_offset="83.64" y_offset="96.01" spacing="-11.96">( ) =</line> | |
<line x_offset="142.32" y_offset="96.01" spacing="-11.97">(1 )</line> | |
<line x_offset="78.36" y_offset="94.02" spacing="-5.98">x</line> | |
<line x_offset="136.92" y_offset="94.02" spacing="-7.97">x</line> | |
<line x_offset="120.96" y_offset="92.94" spacing="-6.89">2</line> | |
<line x_offset="117.24" y_offset="87.75" spacing="-6.76">l</line> | |
<line x_offset="120.72" y_offset="85.86" spacing="-6.09">1</line> | |
<line x_offset="161.52" y_offset="73.8" spacing="-24.78">(</line> | |
<line x_offset="0.0" y_offset="63.25" spacing="-1.42">Again approximating the Poisson distribution for</line> | |
<line x_offset="136.92" y_offset="30.25" spacing="21.03">1</line> | |
<line x_offset="156.6" y_offset="22.23" spacing="-3.93">,</line> | |
<line x_offset="142.8" y_offset="19.38" spacing="-5.13">3</line> | |
<line x_offset="118.44" y_offset="13.74" spacing="-14.8">≈</line> | |
<line x_offset="132.24" y_offset="10.95" spacing="-9.16">N</line> | |
<line x_offset="0.0" y_offset="47.29" spacing="-48.31">variance equal to the mean, we obtain</line> | |
<line x_offset="78.84" y_offset="28.14" spacing="11.18">2</line> | |
<line x_offset="78.36" y_offset="20.22" spacing="-0.05">x</line> | |
<line x_offset="71.76" y_offset="22.23" spacing="-13.96">σ /N</line> | |
<line x_offset="83.64" y_offset="22.21" spacing="-11.96">(1 )</line> | |
<line x_offset="102.84" y_offset="0.0" spacing="-14.63">(</line> | |
<component x="72.0" y="40.31" width="261.7" height="149.74" page="11" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="36.85" font="IWMANX+CMEX10" letter_ratio="0.33" year_ratio="0.0" cap_ratio="0.0" name_ratio="0" word_count="2" | |
lateness="0.7333333333333333" reference_score="9.9"> | |
<line x_offset="0.0" y_offset="22.23" spacing="2.67">N</line> | |
<line x_offset="3.0" y_offset="0.0" spacing="-14.62">(</line> | |
<component x="339.36" y="81.35" width="9.64" height="36.85" page="11" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="11.97" font="IKTHOC+CMR12" letter_ratio="0.0" year_ratio="0.0" cap_ratio="0.0" name_ratio="0.2" word_count="5" | |
lateness="0.7333333333333333" reference_score="9.35"> | |
<line x_offset="0.0" y_offset="0.0" spacing="0.0">by a gamma distribution with</line> | |
<component x="355.8" y="103.56" width="160.81" height="11.97" page="11" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="4.02" font="FJIWZS+Times-Roman" letter_ratio="1.0" year_ratio="0.0" cap_ratio="0.0" name_ratio="0" | |
word_count="1" lateness="0.8" reference_score="5.15"> | |
<line x_offset="0.0" y_offset="0.0" spacing="0.0">0.12</line> | |
<component x="197.21" y="698.64" width="10.05" height="4.02" page="12" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="9.96" font="KAAPYP+CMR10" letter_ratio="0.29" year_ratio="0.02" cap_ratio="0.22" | |
name_ratio="0.1544811320754717" word_count="848" lateness="0.9333333333333333" reference_score="19.89"> | |
<line x_offset="344.28" y_offset="311.29" spacing="0.5">Consolidation of the</line> | |
<line x_offset="5.04" y_offset="310.8" spacing="-9.47">[1] H. Corte and E.H. Lloyd. Fluid flow through paper and sheet structure. | |
In</line> | |
<line x_offset="30.48" y_offset="298.33" spacing="3.5">Paper Web</line> | |
<line x_offset="91.8" y_offset="298.29" spacing="-9.14">Trans. IIIrd Fund. Res. Symp.</line> | |
<line x_offset="231.72" y_offset="297.84" spacing="-9.51">(F. Bolam, ed.), pp981-1009, BPBMA, London,</line> | |
<line x_offset="30.48" y_offset="284.88" spacing="3.0">1966.</line> | |
<line x_offset="5.04" y_offset="271.92" spacing="3.0">[2] C.T.J. Dodson and W.W. Sampson. The effect of paper formation and | |
grammage on its pore size</line> | |
<line x_offset="165.84" y_offset="259.45" spacing="3.5">22</line> | |
<line x_offset="87.48" y_offset="259.41" spacing="-9.14">J. Pulp Pap. Sci.</line> | |
<line x_offset="30.48" y_offset="258.96" spacing="-9.51">distribution.</line> | |
<line x_offset="177.36" y_offset="258.96" spacing="-9.96">(5):J165-J169, 1996.</line> | |
<line x_offset="5.04" y_offset="246.0" spacing="3.0">[3] M.S. Abdel-Ghani and G.A. Davies. Simulation of non-woven fibre mats and | |
the application to</line> | |
<line x_offset="78.72" y_offset="233.61" spacing="3.22">Chem. Eng. Sci.</line> | |
<line x_offset="30.48" y_offset="233.16" spacing="-9.51">coalescers.</line> | |
<line x_offset="153.48" y_offset="233.16" spacing="-9.96">40(1):117-129, 1985.</line> | |
<line x_offset="416.76" y_offset="220.65" spacing="3.34">Chem.</line> | |
<line x_offset="5.04" y_offset="220.2" spacing="-9.51">[4] H.W. Piekaar and L.A. Clarenburg. Aerosol filters-Pore size | |
distribution in fibrous filters.</line> | |
<line x_offset="73.56" y_offset="207.73" spacing="3.5">22</line> | |
<line x_offset="30.48" y_offset="207.69" spacing="-9.14">Eng. Sci.</line> | |
<line x_offset="85.08" y_offset="207.24" spacing="-9.51">():1399-1408, 1967.</line> | |
<line x_offset="361.92" y_offset="194.73" spacing="3.34">Appl. Math. Model.</line> | |
<line x_offset="5.04" y_offset="194.28" spacing="-9.51">[5] J. Castro and M. Ostoja-Starzewski. Particle seiving in a random fibre | |
network.</line> | |
<line x_offset="30.48" y_offset="181.81" spacing="3.5">24</line> | |
<line x_offset="42.0" y_offset="181.32" spacing="-9.47">(8-9):523-534, 2000.</line> | |
<line x_offset="5.04" y_offset="168.36" spacing="3.0">[6] M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones and M.S. | |
Dresselhaus. 'Buckypaper'</line> | |
<line x_offset="170.88" y_offset="155.89" spacing="3.5">433</line> | |
<line x_offset="138.12" y_offset="155.85" spacing="-9.14">Nature</line> | |
<line x_offset="30.48" y_offset="155.4" spacing="-9.51">from coaxial nanotubes.</line> | |
<line x_offset="188.16" y_offset="155.4" spacing="-9.96">(7025):476, 2005.</line> | |
<line x_offset="5.04" y_offset="142.44" spacing="3.0">[7] L.J. Hall, V.R. Coluci, D.S. Galv˜ao, M.K. Kozlov, M. Zhang, S.O. | |
Dantes and R.H. Baughman.</line> | |
<line x_offset="287.76" y_offset="129.93" spacing="3.34">Science320</line> | |
<line x_offset="30.48" y_offset="129.48" spacing="-9.51">Sign change of Poisson's ratio for carbon nanotube sheets.</line> | |
<line x_offset="340.44" y_offset="129.48" spacing="-9.96">(5875):504-507, 2008.</line> | |
<line x_offset="349.32" y_offset="116.97" spacing="3.34">Polymer</line> | |
<line x_offset="5.04" y_offset="116.52" spacing="-9.51">[8] D.R. Paul and L.M. Robeson. Polymer nanotechnology: | |
nanocompsoites.</line> | |
<line x_offset="389.52" y_offset="116.52" spacing="-9.96">49(15):3187-</line> | |
<line x_offset="30.48" y_offset="103.56" spacing="3.0">3204, 2008.</line> | |
<line x_offset="89.64" y_offset="91.05" spacing="3.34">et al.</line> | |
<line x_offset="5.04" y_offset="90.6" spacing="-9.51">[9] S.J. Eichhorn</line> | |
<line x_offset="122.04" y_offset="90.6" spacing="-9.96">Review: current international research into cellulose nanofibres | |
and</line> | |
<line x_offset="169.44" y_offset="78.13" spacing="3.5">45</line> | |
<line x_offset="105.24" y_offset="78.09" spacing="-9.14">J. Mater. Sci.</line> | |
<line x_offset="30.48" y_offset="77.64" spacing="-9.51">nanocomposites.</line> | |
<line x_offset="180.96" y_offset="77.64" spacing="-9.96">(1):1-33, 2010.</line> | |
<line x_offset="0.0" y_offset="64.68" spacing="3.0">[10] Q.P. Pham, U. Sharma and A.G. Mikos. Electrospinning of polymeric | |
nanofibers for tissue</line> | |
<line x_offset="184.68" y_offset="52.29" spacing="3.22">Tissue Eng.</line> | |
<line x_offset="30.48" y_offset="51.84" spacing="-9.51">engineering applications: a review.</line> | |
<line x_offset="239.88" y_offset="51.84" spacing="-9.96">12(5):1197-1211, 2006.</line> | |
<line x_offset="328.2" y_offset="13.41" spacing="29.26">Proc. Nat. Acad. Sci. USA</line> | |
<line x_offset="0.0" y_offset="38.88" spacing="-35.43">[11] T.J. Sill, H.A. von Recum. Electro spinning: Applications in drug | |
delivery and tissue engineering.</line> | |
<line x_offset="77.28" y_offset="26.41" spacing="3.5">29</line> | |
<line x_offset="30.48" y_offset="26.37" spacing="-9.14">Biomater.</line> | |
<line x_offset="88.8" y_offset="25.92" spacing="-9.51">(13):1989-2006, 2008.</line> | |
<line x_offset="0.0" y_offset="12.96" spacing="3.0">[12] R.E. Miles. Random polygons determined by random lines in a plane.</line> | |
<line x_offset="30.48" y_offset="0.0" spacing="3.0">52 901-907,1157-1160 (1964).</line> | |
<line x_offset="374.4" y_offset="648.09" spacing="0.34">J. Appl. Probab.</line> | |
<line x_offset="0.0" y_offset="647.64" spacing="-9.51">[13] J.C. Tanner. The proportion of quadrilaterals formed by random lines | |
in a plane.</line> | |
<line x_offset="30.48" y_offset="634.68" spacing="3.0">20(2), 400-404 (1983).</line> | |
<line x_offset="0.0" y_offset="621.72" spacing="3.0">[14] I.K. Crain and R.E. Miles. Monte Carlo estimates of the distributions of | |
the random polygons</line> | |
<line x_offset="213.72" y_offset="609.21" spacing="3.34">J. Statist. Comput. Simul.</line> | |
<line x_offset="30.48" y_offset="608.76" spacing="-9.51">determined by random lines in the plane.</line> | |
<line x_offset="331.8" y_offset="608.76" spacing="-9.96">4:293-325, 1976.</line> | |
<line x_offset="266.04" y_offset="596.29" spacing="3.5">24</line> | |
<line x_offset="201.0" y_offset="596.25" spacing="-9.14">J. Appl. Prob.</line> | |
<line x_offset="0.0" y_offset="595.8" spacing="-9.51">[15] E.I. George. Sampling random polygons.</line> | |
<line x_offset="277.56" y_offset="595.8" spacing="-9.96">(3):557-573, 1987.</line> | |
<line x_offset="0.0" y_offset="582.84" spacing="3.0">[16] C.T.J. Dodson and W.W. Sampson. Planar line processes for void and | |
density statistics in thin</line> | |
<line x_offset="217.2" y_offset="570.37" spacing="3.5">129</line> | |
<line x_offset="143.88" y_offset="570.33" spacing="-9.14">J. Statist. Phys.</line> | |
<line x_offset="30.48" y_offset="569.88" spacing="-9.51">stochastic fibre networks.</line> | |
<line x_offset="234.48" y_offset="569.88" spacing="-9.96">(2):311-322, 2007.</line> | |
<line x_offset="0.0" y_offset="556.92" spacing="3.0">[17] O. Kallmes and H. Corte. The structure of paper, I. The statistical | |
geometry of an ideal two</line> | |
<line x_offset="188.88" y_offset="544.45" spacing="3.5">43</line> | |
<line x_offset="316.8" y_offset="544.45" spacing="-8.98">44</line> | |
<line x_offset="149.04" y_offset="544.41" spacing="-9.14">Tappi J.</line> | |
<line x_offset="281.16" y_offset="544.41" spacing="-9.18">Errata:</line> | |
<line x_offset="30.48" y_offset="543.96" spacing="-9.51">dimensional fiber network.</line> | |
<line x_offset="200.4" y_offset="543.96" spacing="-9.96">(9):737-752, 1960.</line> | |
<line x_offset="328.32" y_offset="543.96" spacing="-9.96">(6):448, 1961.</line> | |
<line x_offset="0.0" y_offset="531.0" spacing="3.0">[18] S.J. Eichhorn and W.W. Sampson. Relationships between specific surface | |
area and pore size in</line> | |
<line x_offset="287.4" y_offset="518.53" spacing="3.5">7</line> | |
<line x_offset="189.24" y_offset="518.49" spacing="-9.14">J. Roy. Soc. Interface</line> | |
<line x_offset="30.48" y_offset="518.04" spacing="-9.51">electrospun polymer fibre networks.</line> | |
<line x_offset="293.16" y_offset="518.04" spacing="-9.96">(45):641-649, 2010.</line> | |
<line x_offset="0.0" y_offset="505.08" spacing="3.0">[19] L. Berhan, Y.B. Yi and A.M. Sastry. Effect of nanorope waviness on the | |
effective moduli of</line> | |
<line x_offset="172.44" y_offset="492.61" spacing="3.5">95</line> | |
<line x_offset="106.68" y_offset="492.57" spacing="-9.14">J. Appl. Phys.</line> | |
<line x_offset="30.48" y_offset="492.12" spacing="-9.51">nanotube sheets.</line> | |
<line x_offset="183.96" y_offset="492.12" spacing="-9.96">(9): 50275034, 2004.</line> | |
<line x_offset="372.48" y_offset="479.61" spacing="3.34">App. Math. Lett.</line> | |
<line x_offset="0.0" y_offset="479.16" spacing="-9.51">[20] C.T.J. Dodson and W.W. Sampson. Modeling a class of stochastic porous | |
media.</line> | |
<line x_offset="30.48" y_offset="466.32" spacing="2.88">10(2), 87-89 (1997).</line> | |
<line x_offset="0.0" y_offset="453.36" spacing="3.0">[21] W.W. Sampson. A multiplanar model for the pore radius distribution in | |
isotropic near-planar</line> | |
<line x_offset="208.08" y_offset="440.89" spacing="3.5">38</line> | |
<line x_offset="143.88" y_offset="440.85" spacing="-9.14">J. Mater. Sci.</line> | |
<line x_offset="30.48" y_offset="440.4" spacing="-9.51">stochastic fibre networks.</line> | |
<line x_offset="219.6" y_offset="440.4" spacing="-9.96">(8):1617-1622, 2003.</line> | |
<line x_offset="0.0" y_offset="427.44" spacing="3.0">[22] A.P. Chatterjee. Nonuniform fiber networks and fiber-based composites: | |
Pore size distributions</line> | |
<line x_offset="182.28" y_offset="414.97" spacing="3.5">108</line> | |
<line x_offset="116.52" y_offset="414.93" spacing="-9.14">J. Appl. Phys.</line> | |
<line x_offset="30.48" y_offset="414.48" spacing="-9.51">and elastic moduli.</line> | |
<line x_offset="199.56" y_offset="414.48" spacing="-9.96">: 063513, 2010.</line> | |
<line x_offset="0.0" y_offset="401.52" spacing="3.0">[23] C.T.J. Dodson, A.G. Handley, Y. Oba and W.W. Sampson. The pore radius | |
distribution in paper.</line> | |
<line x_offset="281.04" y_offset="389.05" spacing="3.5">56</line> | |
<line x_offset="236.88" y_offset="389.01" spacing="-9.14">Appita J.</line> | |
<line x_offset="30.48" y_offset="388.56" spacing="-9.51">Part I: The effect of formation and grammage.</line> | |
<line x_offset="292.56" y_offset="388.56" spacing="-9.96">(4):275-280, 2003.</line> | |
<line x_offset="383.52" y_offset="376.09" spacing="3.5">Advances in</line> | |
<line x_offset="0.0" y_offset="375.6" spacing="-9.47">[24] J.-F. Bloch and S. Rolland du Roscoat. Three-dimensional structural | |
analysis. In</line> | |
<line x_offset="30.48" y_offset="363.13" spacing="3.5">Pulp and Paper Research, Oxford 2009</line> | |
<line x_offset="224.88" y_offset="362.64" spacing="-9.47">. (ed. S.J. I'Anson), Proc. 14th Fund. Res. Symp. ,</line> | |
<line x_offset="436.92" y_offset="355.57" spacing="-9.96">}</line> | |
<line x_offset="30.48" y_offset="349.68" spacing="-4.08">pp599-664. PPFRS, Manchester, 2009.</line> | |
<line x_offset="0.0" y_offset="336.72" spacing="3.0">[25] S. Jaganathan, H.V. Tafreshi and B. Pourdeyhimi. Modeling liquid | |
porosimetry in modeled and</line> | |
<line x_offset="277.68" y_offset="324.25" spacing="3.5">326</line> | |
<line x_offset="190.56" y_offset="324.21" spacing="-9.14">J. Coll. Interf. Sci.</line> | |
<line x_offset="30.48" y_offset="323.76" spacing="-9.51">imaged 3-D fibrous microstructures.</line> | |
<line x_offset="294.96" y_offset="323.76" spacing="-9.96">(1):166-175, 2008.</line> | |
<line x_offset="0.0" y_offset="310.8" spacing="3.0">[26] E. Tomba, P. Facco, M. Roso, M. Modesti, F. Bezzo and M. Barolo. | |
Artificial vision system for</line> | |
<line x_offset="30.48" y_offset="297.84" spacing="3.0">the automatic measurement of interfiber pore characteristics and fiber | |
diamater in nanofiber</line> | |
<line x_offset="179.28" y_offset="285.49" spacing="3.38">49</line> | |
<line x_offset="81.24" y_offset="285.45" spacing="-9.14">Ind. Eng. Chem. Res.</line> | |
<line x_offset="30.48" y_offset="285.0" spacing="-9.51">assemblies.</line> | |
<line x_offset="190.8" y_offset="285.0" spacing="-9.96">(6):2957-2968, 2010.</line> | |
<line x_offset="413.52" y_offset="272.49" spacing="3.34">J. Roy.</line> | |
<line x_offset="0.0" y_offset="272.04" spacing="-9.51">[27] C.T.J. Dodson. Spatial variability and the theory of sampling in | |
random fibrous networks.</line> | |
<line x_offset="85.92" y_offset="259.57" spacing="3.5">B 33</line> | |
<line x_offset="30.48" y_offset="259.53" spacing="-9.14">Statist. Soc.</line> | |
<line x_offset="109.44" y_offset="259.08" spacing="-9.51">(1):88-94, 1971.</line> | |
<line x_offset="156.6" y_offset="246.61" spacing="3.5">Paper: An Engineered Stochastic Structure</line> | |
<line x_offset="0.0" y_offset="246.12" spacing="-9.47">[28] M. Deng and C.T.J. Dodson.</line> | |
<line x_offset="381.96" y_offset="246.12" spacing="-9.96">. Tappi Press,</line> | |
<line x_offset="30.48" y_offset="233.16" spacing="3.0">Atlanta, 1994.</line> | |
<line x_offset="0.0" y_offset="220.2" spacing="3.0">[29] D.T. Hristopulos and T. Uesaka. Structural disorder effects on the | |
tensile strength distribution of</line> | |
<line x_offset="320.16" y_offset="207.69" spacing="3.34">Phys. Rev. B.</line> | |
<line x_offset="30.48" y_offset="207.24" spacing="-9.51">heterogeneous brittle materials with emphasis on fiber networks.</line> | |
<line x_offset="385.08" y_offset="207.24" spacing="-9.96">70(6):064108,</line> | |
<line x_offset="30.48" y_offset="194.28" spacing="3.0">2004.</line> | |
<line x_offset="362.04" y_offset="181.77" spacing="3.34">J. Pulp Paper Sci.</line> | |
<line x_offset="0.0" y_offset="181.32" spacing="-9.51">[30] R. Wathen and K. Niskanen. Strength distributions of running paper | |
webs.</line> | |
<line x_offset="30.48" y_offset="168.85" spacing="3.5">32</line> | |
<line x_offset="42.0" y_offset="168.36" spacing="-9.47">(3):137-144, 2006.</line> | |
<line x_offset="0.0" y_offset="155.4" spacing="3.0">[31] E. Schweers and F. Lo¨ffler. Realistic modelling of the behaviour of | |
fibrous filters through</line> | |
<line x_offset="234.48" y_offset="142.93" spacing="3.5">80</line> | |
<line x_offset="172.08" y_offset="142.89" spacing="-9.14">Powder Tech.</line> | |
<line x_offset="30.48" y_offset="142.44" spacing="-9.51">consideration of filter structure.</line> | |
<line x_offset="246.0" y_offset="142.44" spacing="-9.96">(3):191-206, 1994.</line> | |
<line x_offset="0.0" y_offset="129.48" spacing="3.0">[32] C. Huang, K. Willeke, Y. Qian, S. Grinshpun and V. Ulevicius. Method for | |
measuring the spatial</line> | |
<line x_offset="289.92" y_offset="116.97" spacing="3.34">Am. Ind. Hyg. Assoc. J.</line> | |
<line x_offset="30.48" y_offset="116.52" spacing="-9.51">variability of aerosol penetration through respirator filters.</line> | |
<line x_offset="399.48" y_offset="116.52" spacing="-9.96">59(7):461-</line> | |
<line x_offset="30.48" y_offset="103.68" spacing="2.88">465, 1998.</line> | |
<line x_offset="0.0" y_offset="90.72" spacing="3.0">[33] A.P. Chatterjee. A simple model for chracterizing non-uniform fibre-based | |
composites and</line> | |
<line x_offset="180.72" y_offset="78.25" spacing="3.5">23</line> | |
<line x_offset="75.12" y_offset="78.21" spacing="-9.14">J. Phys.: Cond. Matter</line> | |
<line x_offset="30.48" y_offset="77.76" spacing="-9.51">networks.</line> | |
<line x_offset="192.24" y_offset="77.76" spacing="-9.96">(15):155014, 2011.</line> | |
<line x_offset="0.0" y_offset="64.8" spacing="3.0">[34] A. Holzmeister, M. Rudisile, A. Greiner and J.H. Wendorff. Structurally | |
and chemically</line> | |
<line x_offset="276.12" y_offset="52.29" spacing="3.34">Eur. Polym. J.</line> | |
<line x_offset="30.48" y_offset="51.84" spacing="-9.51">heterogenous nanofibrous nonwovens via electrospinning.</line> | |
<line x_offset="341.64" y_offset="51.84" spacing="-9.96">43(12):4859-4867, 2007.</line> | |
<line x_offset="314.64" y_offset="39.37" spacing="3.5">6</line> | |
<line x_offset="249.48" y_offset="39.33" spacing="-9.14">J. Appl. Prob.</line> | |
<line x_offset="0.0" y_offset="38.88" spacing="-9.51">[35] R. Coleman. Random paths through convex bodies.</line> | |
<line x_offset="320.4" y_offset="38.88" spacing="-9.96">(2):430-441, 1969.</line> | |
<line x_offset="356.52" y_offset="12.96" spacing="15.96">(D. Zwillinger, ed.),</line> | |
<line x_offset="0.0" y_offset="25.92" spacing="-22.92">[36] W.C. Rinaman, C. Heil, M.T. Strauss, M. Mascagni and M. Souza. | |
Probability and Statistics.</line> | |
<line x_offset="91.8" y_offset="13.45" spacing="3.5">CRC Standard Mathematical Tables and Formulae</line> | |
<line x_offset="30.48" y_offset="12.96" spacing="-9.47">Chapter 7 in</line> | |
<line x_offset="30.48" y_offset="0.0" spacing="3.0">30th edition. CRC Press, Boca Raton, 1996.</line> | |
<component x="72.0" y="37.23" width="445.04" height="320.76" page="13" page_width="612.0" page_height="792.0"/> | |
<component x="72.0" y="42.03" width="445.08" height="657.6" page="14" page_width="612.0" page_height="792.0"/> | |
</section> | |
<section line_height="9.96" font="KAAPYP+CMR10" letter_ratio="0.29" year_ratio="0.01" cap_ratio="0.2" | |
name_ratio="0.13636363636363635" word_count="88" lateness="1.0" reference_score="18.66"> | |
<line x_offset="0.0" y_offset="103.68" spacing="0.0">[37] Wolfram Research, Inc., Mathematica, Version 8.0, Champaign, IL, | |
2010.</line> | |
<line x_offset="0.0" y_offset="90.72" spacing="3.0">[38] A. Azzalini. A class of distributions which includes the normal | |
ones.</line> | |
<line x_offset="321.48" y_offset="90.72" spacing="-9.96">Scand. J. Statist.12(2):171-</line> | |
<line x_offset="30.48" y_offset="77.76" spacing="3.0">178, 1985.</line> | |
<line x_offset="0.0" y_offset="64.8" spacing="3.0">[39] W.C. Bliesner. A study of the porous structure of fibrous sheets using | |
permeability techniques.</line> | |
<line x_offset="30.48" y_offset="52.29" spacing="3.34">Tappi J.</line> | |
<line x_offset="70.32" y_offset="51.84" spacing="-9.51">47(7):392-400, 1964.</line> | |
<line x_offset="0.0" y_offset="38.88" spacing="3.0">[40] C.T.J. Dodson and W.W. Sampson. The effect of paper formation and | |
grammage on its pore size</line> | |
<line x_offset="87.48" y_offset="26.37" spacing="3.34">J. Pulp Pap. Sci.</line> | |
<line x_offset="30.48" y_offset="25.92" spacing="-9.51">distribution.</line> | |
<line x_offset="165.84" y_offset="25.92" spacing="-9.96">22(5):J165-J169, 1996.</line> | |
<line x_offset="30.48" y_offset="0.45" spacing="16.3">J. Mater. Sci.</line> | |
<line x_offset="0.0" y_offset="12.96" spacing="-22.47">[41] W.W. Sampson. Comments on the pore radius distribution in near-planar | |
stochastic fibre networks.</line> | |
<line x_offset="94.68" y_offset="0.0" spacing="3.0">36(21):5131-5135, 2001.</line> | |
<component x="72.0" y="585.99" width="444.96" height="113.64" page="15" page_width="612.0" page_height="792.0"/> | |
</section> | |
</pdf> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment