Created
November 27, 2018 11:24
-
-
Save lcamposgarrido/ebf8bd87439b820bb551ec656cc3f8bd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import keras | |
from keras.models import Sequential | |
from keras.models import load_model | |
from keras.layers import Dense | |
from keras.optimizers import Adam | |
import numpy as np | |
import random | |
from collections import deque | |
class Agent: | |
def __init__(self, state_size, is_eval=False, model_name=""): | |
self.state_size = state_size # normalized previous days | |
self.action_size = 3 # sit, buy, sell | |
self.memory = deque(maxlen=1000) | |
self.inventory = [] | |
self.model_name = model_name | |
self.is_eval = is_eval | |
self.gamma = 0.95 | |
self.epsilon = 1.0 | |
self.epsilon_min = 0.01 | |
self.epsilon_decay = 0.995 | |
self.model = load_model("models/" + model_name) if is_eval else self._model() | |
def _model(self): | |
model = Sequential() | |
model.add(Dense(units=64, input_dim=self.state_size, activation="relu")) | |
model.add(Dense(units=32, activation="relu")) | |
model.add(Dense(units=8, activation="relu")) | |
model.add(Dense(self.action_size, activation="linear")) | |
model.compile(loss="mse", optimizer=Adam(lr=0.001)) | |
return model | |
def act(self, state): | |
if not self.is_eval and random.random() <= self.epsilon: | |
return random.randrange(self.action_size) | |
options = self.model.predict(state) | |
return np.argmax(options[0]) | |
def expReplay(self, batch_size): | |
mini_batch = [] | |
l = len(self.memory) | |
for i in range(l - batch_size + 1, l): | |
mini_batch.append(self.memory[i]) | |
for state, action, reward, next_state, done in mini_batch: | |
target = reward | |
if not done: | |
target = reward + self.gamma * np.amax(self.model.predict(next_state)[0]) | |
target_f = self.model.predict(state) | |
target_f[0][action] = target | |
self.model.fit(state, target_f, epochs=1, verbose=0) | |
if self.epsilon > self.epsilon_min: | |
self.epsilon *= self.epsilon_decay | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment