Skip to content

Instantly share code, notes, and snippets.

@leavism
Created October 31, 2023 20:31
Show Gist options
  • Save leavism/5ada114858130c89f4e066f376e69924 to your computer and use it in GitHub Desktop.
Save leavism/5ada114858130c89f4e066f376e69924 to your computer and use it in GitHub Desktop.
class ImprovedCatDogClassifier(nn.Module):
def __init__(self):
super(ImprovedCatDogClassifier, self).__init__()
# Convolutional layers with BatchNorm
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.pool = nn.MaxPool2d(2, 2)
# Fully connected layers with Dropout
self.fc1 = nn.Linear(256 * 14 * 14, 128)
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(128, 2)
def forward(self, x):
x = self.pool(F.relu(self.bn1(self.conv1(x))))
x = self.pool(F.relu(self.bn2(self.conv2(x))))
x = self.pool(F.relu(self.bn3(self.conv3(x))))
x = self.pool(F.relu(self.bn4(self.conv4(x))))
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment