Created
October 10, 2016 14:58
-
-
Save lebedov/94f1caf8a792d80cd91e7b99c1a0c1d7 to your computer and use it in GitHub Desktop.
How to normalize intensity of brain images to the range [0, 1] with nipype and FSL.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
How to normalize intensity of brain images to the range [0, 1] with nipype and FSL. | |
""" | |
import os.path | |
import nipype | |
import nipype.interfaces | |
import nipype.interfaces.fsl as fsl | |
# Assume that inputs and outputs live in subdirectories of this directory: | |
base_dir = os.path.join(os.environ['HOME'], 'project') | |
# Source and sink: | |
grabber = nipype.Node(interface=nipype.DataGrabber(infields=['arg'], | |
outfields=['out_file']), | |
name='grabber') | |
grabber.inputs.base_directory = os.path.join(base_dir, 'input') | |
grabber.inputs.sort_filelist = False | |
grabber.inputs.template = '%s.nii' | |
grabber.inputs.arg = '*' | |
# Use substition to force all output files to be dumped into the same | |
# directory: | |
sink = nipype.Node(interface=nipype.DataSink(), | |
name='sink') | |
sink.inputs.base_directory = os.path.join(base_dir, 'output') | |
sink.inputs.regexp_substitutions = [('_\w+\d+', '.')] | |
# Intensity normalization - subtract minimum, then divide by difference of maximum and minimum: | |
fslstats = nipype.MapNode(interface=fsl.ImageStats(op_string='-R'), | |
name='fslstats', iterfield=['in_file']) | |
def func(in_stat): | |
min_val, max_val = in_stat | |
return '-sub %s -div %s' % (min_val, (max_val-min_val)) | |
stat_to_op_string = nipype.MapNode(interface=nipype.interfaces.Function(input_names=['in_stat'], | |
output_names=['op_string'], | |
function=func), | |
name='stat_to_op_string', iterfield=['in_stat']) | |
fslmaths = nipype.MapNode(interface=fsl.ImageMaths(), | |
name='fslmaths', iterfield=['in_file', 'op_string']) | |
# Use @ to prevent creation of subdirectories in sink's base directory | |
# when saving output: | |
workflow = nipype.Workflow('workflow') | |
workflow.connect([(grabber, fslstats, [('out_file', 'in_file')]), | |
(grabber, fslmaths, [('out_file', 'in_file')]), | |
(fslstats, stat_to_op_string, [('out_stat', 'in_stat')]), | |
(stat_to_op_string, fslmaths, [('op_string', 'op_string')]), | |
(fslmaths, sink, [('out_file', '@in_file')])]) | |
workflow.run('MultiProc', plugin_args={'n_procs': 4}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment