Created
April 24, 2017 21:56
-
-
Save lebedov/bca3c70e664f54cdf8c3cd0c28c11a0f to your computer and use it in GitHub Desktop.
How to "wrap" a CUDA kernel with a C++ class.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// How to "wrap" a CUDA kernel with a C++ class; the kernel must be defined outside of | |
// the class and launched from within a class instance's method. | |
#include <iostream> | |
#include <cuda.h> | |
#include <cuda_runtime.h> | |
#define LEN 10 | |
__global__ void kernel(int *a, int *b, unsigned int N); | |
class MyClass { | |
public: | |
MyClass() { | |
cudaMalloc((void **)&data, sizeof(int)*LEN); | |
cudaMemset((void *)data, 0, sizeof(int)*LEN); | |
}; | |
~MyClass() { | |
cudaFree((void *)data); | |
}; | |
void run(int *b) { | |
dim3 grid(1); | |
dim3 block(LEN); | |
kernel<<<grid, block>>>(data, b, LEN); | |
}; | |
int *get(void) { | |
return data; | |
}; | |
private: | |
int *data; | |
}; | |
__global__ void kernel(int *a, int *b, unsigned int N) { | |
const unsigned int i = blockIdx.x*blockDim.x+threadIdx.x; | |
if (i<N) { | |
a[i] += b[i]; | |
} | |
} | |
void show(int *data, unsigned int N) { | |
for (int i=0; i<N; i++) { | |
std::cout << data[i] << " "; | |
} | |
std::cout << std::endl; | |
} | |
int main(void) { | |
MyClass c; | |
int *b_gpu, b_host[LEN]; | |
for (int i=0; i<LEN; i++) { | |
b_host[i] = i; | |
} | |
cudaMalloc((void **)&b_gpu, sizeof(int)*LEN); | |
cudaMemcpy(b_gpu, b_host, sizeof(int)*LEN, cudaMemcpyHostToDevice); | |
c.run(b_gpu); | |
cudaMemcpy(b_host, c.get(), sizeof(int)*LEN, cudaMemcpyDeviceToHost); | |
cudaFree(b_gpu); | |
show(b_host, LEN); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
How would you call device functions within the class from the kernel?