Skip to content

Instantly share code, notes, and snippets.

@lebedov
Last active February 20, 2024 09:44
Show Gist options
  • Save lebedov/f09030b865c4cb142af1 to your computer and use it in GitHub Desktop.
Save lebedov/f09030b865c4cb142af1 to your computer and use it in GitHub Desktop.
Retrieve intraday stock data from Google Finance.
#!/usr/bin/env python
"""
Retrieve intraday stock data from Google Finance.
"""
import csv
import datetime
import re
import pandas as pd
import requests
def get_google_finance_intraday(ticker, period=60, days=1):
"""
Retrieve intraday stock data from Google Finance.
Parameters
----------
ticker : str
Company ticker symbol.
period : int
Interval between stock values in seconds.
days : int
Number of days of data to retrieve.
Returns
-------
df : pandas.DataFrame
DataFrame containing the opening price, high price, low price,
closing price, and volume. The index contains the times associated with
the retrieved price values.
"""
uri = 'http://www.google.com/finance/getprices' \
'?i={period}&p={days}d&f=d,o,h,l,c,v&df=cpct&q={ticker}'.format(ticker=ticker,
period=period,
days=days)
page = requests.get(uri)
reader = csv.reader(page.content.splitlines())
columns = ['Open', 'High', 'Low', 'Close', 'Volume']
rows = []
times = []
for row in reader:
if re.match('^[a\d]', row[0]):
if row[0].startswith('a'):
start = datetime.datetime.fromtimestamp(int(row[0][1:]))
times.append(start)
else:
times.append(start+datetime.timedelta(seconds=period*int(row[0])))
rows.append(map(float, row[1:]))
if len(rows):
return pd.DataFrame(rows, index=pd.DatetimeIndex(times, name='Date'),
columns=columns)
else:
return pd.DataFrame(rows, index=pd.DatetimeIndex(times, name='Date'))
@kongaraman
Copy link

import requests
import pandas as pd
import arrow
import datetime

def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'):
    res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals()))
    data = res.json()
    body = data['chart']['result'][0]    
    dt = datetime.datetime
    dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime')
    df = pd.DataFrame(body['indicators']['quote'][0], index=dt)
    dg = pd.DataFrame(body['timestamp'])    
    df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')]
    df.dropna(inplace=True)     #removing NaN rows
    df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME']    #Renaming columns in pandas
    
    return df

data = get_quote_data('KPIT.NS', '1d', '1m')
print(data)

@carly11
Copy link

carly11 commented Aug 10, 2018

Does anyone know why yahoo does not provide 30 minute data? I know that 1, 15, 60 work fine but not 30m.

@Rajasekaran1976
Copy link

how do you get 1, 15, 60 minute data from yahoo?

@carly11
Copy link

carly11 commented Aug 10, 2018

using the script posted just before my question.

@ynagendra
Copy link

The code above by kongaraman is wonderful. thanks for posting.

@kongaraman
Copy link

Thanks ynagendra

@kongaraman
Copy link

I noticed that yahoo data is not constant. For 1 minute, i observed that data gives differently for the same time period.

When i run the above python code, it should be the same for data, as long as i run any number of times.

Can someone have idea on this? Also this data is not exactly matching to actual exchange data.

I am not sure, why there is a difference. If anybody have idea then please post your comments.

@kongaraman
Copy link

Observed that there are many empty values while extracting data.

So i used df.dropna(inplace=True) #removing NaN rows

Infact the above line is not needed. We need to get good quality data, which is missing from above link.

@sanjayubs
Copy link

import requests
import pandas as pd
import arrow
import datetime

def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'):
    res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals()))
    data = res.json()
    body = data['chart']['result'][0]    
    dt = datetime.datetime
    dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime')
    df = pd.DataFrame(body['indicators']['quote'][0], index=dt)
    dg = pd.DataFrame(body['timestamp'])    
    df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')]
    df.dropna(inplace=True)     #removing NaN rows
    df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME']    #Renaming columns in pandas
    
    return df

data = get_quote_data('KPIT.NS', '1d', '1m')
print(data)

Hi,
I am getting error ModuleNotFoundError: No module named 'arrow'. I have installed arrow module, still it throws this error

@bertrandobi
Copy link

Thanks for great ideas.
I tried to apply kongaraman function on a list of stock tickers. when i pplied a for loop, i got the follwing error:

TypeError: 'NoneType' object has no attribute 'getitem'

@rkolagatla
Copy link

HI All,
The yahoo finance API seems to be stuck at March 28th 2019 and not returning any data post that. I am trying to import data for the NIFTYBANK NSE Index and also tried for other stocks as well. Are others also facing the same problem and can anyone suggest some alternatives for 1minute Data Provider for NSE Stocks.
Thanks,
Rajesh

@peter4apple
Copy link

Hi.
Was anyone able to get hourly information on stock prices, either individual or by S&P?

@aspiringguru
Copy link

seems to have stopped working, now isnt returning anything - could be me of course

URL is http://www.google.com/finance/getprices?i=60&p=1d&f=d,o,h,l,c,v&df=cpct&q=VOD&x=LON
Empty DataFrame
Columns: []
Index: []
done

when I run that URL in the browser, it thinks I'm a bot and shuts me down, any way around that please ?

ta

that url failed for me as well.

We're sorry...
... but your computer or network may be sending automated queries. To protect our users, we can't process your request right now.

@earlcharles1
Copy link

import requests
import pandas as pd
import arrow
import datetime

def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'):
    res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals()))
    data = res.json()
    body = data['chart']['result'][0]    
    dt = datetime.datetime
    dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime')
    df = pd.DataFrame(body['indicators']['quote'][0], index=dt)
    dg = pd.DataFrame(body['timestamp'])    
    df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')]
    df.dropna(inplace=True)     #removing NaN rows
    df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME']    #Renaming columns in pandas
    
    return df

data = get_quote_data('KPIT.NS', '1d', '1m')
print(data)

Works great, but is there a way to save this data to a CSV file?

@lebedov
Copy link
Author

lebedov commented Nov 25, 2020

import requests
import pandas as pd
import arrow
import datetime

def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'):
    res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals()))
    data = res.json()
    body = data['chart']['result'][0]    
    dt = datetime.datetime
    dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime')
    df = pd.DataFrame(body['indicators']['quote'][0], index=dt)
    dg = pd.DataFrame(body['timestamp'])    
    df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')]
    df.dropna(inplace=True)     #removing NaN rows
    df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME']    #Renaming columns in pandas
    
    return df

data = get_quote_data('KPIT.NS', '1d', '1m')
print(data)

Works great, but is there a way to save this data to a CSV file?

data.to_csv('output.csv')

@adgestars007
Copy link

adgestars007 commented Nov 27, 2020

To sum up this string..
Step 1: Install python: https://www.python.org/downloads/
Step 2: Install panda: pip install panda
Step 3: Save this code:
'
import requests
import pandas as pd
import arrow
import datetime

def get_quote_data(symbol='SBIN.NS', data_range='1d', data_interval='1m'):
res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals()))
data = res.json()
body = data['chart']['result'][0]
dt = datetime.datetime
dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime')
df = pd.DataFrame(body['indicators']['quote'][0], index=dt)
dg = pd.DataFrame(body['timestamp'])

return df.loc[:, ('open', 'high', 'low', 'close', 'volume')]

data = get_quote_data('SBIN.NS', '5d', '1m')
data.dropna(inplace=True) #removing NaN rows
print(data)
data.to_csv('output.csv')
'
Step 4: Drag the saved python file to CMD and an output CSV will be saved.

@atulsahire
Copy link

what is the symbol for NIFTY50 data

@syedshahab698
Copy link

what is the symbol for NIFTY50 data

Yahoo finance symbol for nifty 50 = '^NSEI'

@sairam18814
Copy link

import requests
import pandas as pd
import arrow
import datetime

def get_quote_data(symbol , data_range='1d', data_interval='1m'):
res = requests.get('https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?range={data_range}&interval={data_interval}'.format(**locals()))
data = res.json()
body = data['chart']['result'][0]
dt = datetime.datetime
dt = pd.Series(map(lambda x: arrow.get(x).to('Asia/Calcutta').datetime.replace(tzinfo=None), body['timestamp']), name='Datetime')
df = pd.DataFrame(body['indicators']['quote'][0], index=dt)
dg = pd.DataFrame(body['timestamp'])
df = df.loc[:, ('open', 'high', 'low', 'close', 'volume')]
df.dropna(inplace=True)
df.columns = ['OPEN', 'HIGH','LOW','CLOSE','VOLUME']

return df

for s in symbol:
data = get_quote_data(s,'1d','1m')
data.to_csv(s.strip(".NS")+'.csv')

this is for multiple stock symbols

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment