Last active
February 15, 2016 19:21
-
-
Save ledell/b3b1e0af3d817beed4b4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(h2o) | |
localH2O <- h2o.init(nthreads = -1) #Start up H2O cluster using nthreads = ncores | |
# Get training data: | |
data <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/wisc-diag-breast-cancer-shuffled.csv", | |
destination_frame = "breast_cancer") | |
y <- "diagnosis" #Response column | |
x <- setdiff(names(data), c(y, "id")) #remove 'id' and response col | |
# Train & Test | |
set.seed(1) | |
ss <- h2o.splitFrame(data) #split data into train & test partitions | |
training_frame <- ss[[1]] | |
validation_frame <- ss[[2]] | |
# Train a GLM | |
h2o_glm <- h2o.glm(x = x, y = y, | |
training_frame = training_frame, | |
validation_frame = validation_frame, | |
family = "binomial") | |
print(h2o_glm@model$validation_metrics@metrics$AUC) | |
# Test set AUC: 0.9935432 | |
h2o.auc(h2o_glm, valid = TRUE) #utility function to get AUC | |
# Cross-validated GBM | |
h2o_gbm <- h2o.gbm(x = x, y = y, | |
training_frame = data, | |
nfolds = 5, | |
family = "binomial", | |
seed = 1) | |
print(h2o_gbm@model$cross_validation_metrics@metrics$AUC) | |
# CV AUC: 0.9894099 | |
# Cross-validate a Random Forest | |
h2o_rf <- h2o.randomForest(x = x, y = y, | |
training_frame = data, | |
nfolds = 5, | |
family = "binomial", | |
seed = 1) | |
print(h2o_rf@model$cross_validation_metrics@metrics$AUC) | |
# CV AUC: 0.9902621 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment