Last active
July 24, 2023 14:44
-
-
Save leeyc0/2bdab65901fe5754c471832acdc00890 to your computer and use it in GitHub Desktop.
SPARK-44512
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import java.io.IOException; | |
import java.util.List; | |
import java.util.function.Function; | |
import org.apache.hadoop.fs.FileSystem; | |
import org.apache.spark.api.java.function.MapFunction; | |
import org.apache.spark.sql.Encoders; | |
import org.apache.spark.sql.Row; | |
import org.apache.spark.sql.SparkSession; | |
import scala.Tuple3; | |
// To compile: javac Test.java && jar cvf Test.jar Test.class | |
// bug: spark-submit --class Test Test.jar | |
// no bug: spark-submit --class Test Test.jar workaround | |
public class Test { | |
public static void main(String args[]) throws IOException { | |
final var spark = SparkSession | |
.builder() | |
.config("mapreduce.fileoutputcommitter.marksuccessfuljobs", "false") | |
.getOrCreate(); | |
final var hadoopConf = spark.sparkContext().hadoopConfiguration(); | |
final var fs = FileSystem.get(hadoopConf); | |
fs.setWriteChecksum(false); | |
// create a minimal dataset that is enough to reproduce the bug | |
// The three columns are named _1, _2, and _3 (the field names of Tuple3) | |
var dataset = spark.createDataset(List.of( | |
new Tuple3<Long, String, String>(3L, "a", "r"), | |
new Tuple3<Long, String, String>(3L, "b", "r"), | |
new Tuple3<Long, String, String>(2L, "b", "q"), | |
new Tuple3<Long, String, String>(2L, "a", "q"), | |
new Tuple3<Long, String, String>(1L, "a", "p"), | |
new Tuple3<Long, String, String>(1L, "b", "p") | |
), | |
Encoders.tuple(Encoders.LONG(), Encoders.STRING(), Encoders.STRING())) | |
.sort("_1") | |
.select("_2", "_3"); | |
// This is an identity mapper, i.e. returns itself | |
// Enabled by adding an argument "workaround" when executing spark-submit. | |
// With AQE enabled, .sort() will work as intended only if this identity mapper | |
// is inserted between .sort() and .select() in the pipeline | |
if (args.length > 0 && args[0].equals("workaround")) { | |
dataset = dataset.map((MapFunction<Row, Row>) row -> row, dataset.encoder()); | |
} | |
// output column _3 to text files, partitioned by column _2 | |
// _1 is only for sorting purpose, not used in output | |
// output will not be sorted without the identity mapper | |
dataset.write() | |
.mode("overwrite") | |
.partitionBy("_2") | |
.text("output"); | |
dataset.explain(); | |
spark.close(); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment