Skip to content

Instantly share code, notes, and snippets.

@legokichi
Created October 12, 2015 08:23
Show Gist options
  • Save legokichi/eeae93ecaa1f4997533b to your computer and use it in GitHub Desktop.
Save legokichi/eeae93ecaa1f4997533b to your computer and use it in GitHub Desktop.

font style

通常 $A,a$
ローマ字(非斜体) ${\mathrm A},{\mathrm a}$
イタリック ${\mathit A}, {\mathit a}$
白抜き ${\mathbb A}, {\mathbb a}$
ウムラウト ${\mathfrak A}, {\mathfrak a}$
ギリシャ文字 $A, \alpha$
花文字 ${\mathscr A}, {\mathscr a}$
筆記体 ${\mathcal A}, {\mathcal a}$
太文字 ${\mathbf A}, {\mathbf a}$
太文字 ${\boldsymbol A}, {\boldsymbol a},$
サンセリフ ${\mathsf A}, {\mathsf a}$
タイプライター ${\mathtt A},{\mathtt a}$

Symbol

$$ \varepsilon \varphi \phi \psi \tau \rho \chi \upsilon \xi \kappa \mu \zeta \eta $$

$$ \varnothing \emptyset \aleph \triangle \Box $$

$$ \varDelta \varGamma \varTheta \varOmega \varPhi \varPsi $$

Unary Operator

$$ \pm \mp $$

$$ \bmod \ast \perp \dagger \star $$

$$ \inf \min \max \lg \ln \log \exp $$

$$ \lim_{i \to \infty} \dim \det \sup $$

$$ 90^{ \circ } A^{ \mathrm{ T } } {}^t ! A \tilde{A} \check{x} $$

Binary Operator

$$ \circ \mapsto \to \rightarrow \longleftrightarrow \Leftarrow \Longrightarrow \Longleftrightarrow \Leftrightarrow \nearrow \searrow \nwarrow \swarrow $$

$$ \fallingdotseq \simeq \cong \gt \geq \geq \lt \leq \leqq

\neq \equiv \sim \backsim $$

$$ \supset \subset \subseteq \supseteq \not \subset \in \ni \notin \not \ni \setminus \cap \cup $$ $$ \times \cdot \div \wedge \vee \curlywedge \curlyvee \oplus \otimes \odot $$

n-ary

$$ \prod \sum \coprod \bigcup \bigcap \bigvee \bigwedge \bigotimes $$

$$ \sqrt[3]{x} $$

Bracket

$$ \langle a,b \rangle $$

$$ | x | \lbrack x \rbrack \lbrace x \rbrace $$

$$ \left|\frac{2}{i}\right|=2 $$

$$ \left|\left{1,2,3\right}\right|=3 $$

$$ \stackrel{ \Large \frown }{ AB } $$

$$ \vec{ a } \overrightarrow{ AB } $$

$$ \begin{vmatrix} a & b \\ c & d \end{vmatrix}=ad-bc $$

$$ ( a_1, a_2, \ldots, a_n ) $$

$$ \left( \begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right) $$

$$ Ax = \left(\begin{array}{ccc} a_{ 11 } & \ldots & a_{ 1n } \\ \vdots & \ddots & \vdots \\ a_{ n1 } & \ldots & a_{ nn } \end{array}\right) \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) $$

examples

$$ A \setminus B = A \cap B^c = { x \mid x \in A, x \notin B } $$

$$ \lim_{ x \to +0 } \frac{ 1 }{ x } = \infty $$

$$ \left. \frac{ dy }{ dx } \right|_{ x = a } $$

$$ \dot{ y } = \frac{ dy }{ dt }\\ \ddddot{ y } = \frac{ d^4 y }{ dt^4 } $$

$$ \begin{eqnarray} \Delta \varphi = \nabla^2 \varphi = \frac{ \partial^2 \varphi }{ \partial x^2 }

  • \frac{ \partial^2 \varphi }{ \partial y^2 }
  • \frac{ \partial^2 \varphi }{ \partial z^2 } \end{eqnarray} $$

$$ \begin{align*} z^{4}+z^{2}+1 &=(z^{2}+1)^{2}-z^{2}\\ &=(z^{2}+z+1)(z^{2}-z+1) \end{align*} $$

$$ \overline{z^{2}}=\overline{z}^{2} $$

$$ \begin{array}{c|ccccc} x & \cdots & -1 & \cdots & 1 & \cdots \\ \hline f’(x) & + & 0 & – & 0 & + \\ \hline f(x) & \nearrow & e & \searrow & -e & \nearrow \end{array} $$

$$ \begin{eqnarray} \boldsymbol{ 1 } = ( \underbrace{ 1, 1, \ldots, 1 }_{ n } )^{ \mathrm{ T } } = \left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array} \right) \end{eqnarray} $$

$$ \boldsymbol{ \rm{ e } }_k = ( 0, \ldots, 0, \stackrel{ k }{ 1 }, 0, \ldots, 0 )^{ \mathrm{ T } } $$

$$ \require{AMScd} \begin{CD} A @>{f}>> B\\ @V{gg}VV {\large\circlearrowleft} @VV{hh}V\\ C @>>{k}> D \end{CD} $$

$$ \begin{xy} \xymatrix { U \ar@/_/[ddr]_y \ar@{.>}[dr]|{\langle x,y \rangle} \ar@/^/[drr]^x \\ & X \times_Z Y \ar[d]^q \ar[r]_p & X \ar[d]_f \\ & Y \ar[r]^g & Z } \end{xy} $$

$$ G(f) = \mathcal{F}^{-1}[g(t)] $$

$$ \begin{CD} A @>f>> B @>>g> C \\ @V{\phi}VV @| @VV{\psi}V \\ C @= E @>h>> F \end{CD} $$

$$\xymatrix{ A \ar[rr] & & B \ar[dl] \\ & C \ar[ul] & }$$

$$\xymatrix{ A \ar@{.>}[rr]^f & & B \ar@{=>}[d] \\ C \ar[r] & D \ar[ul] \ar[ur] & E \ar[l] \\ F \ar[u] \ar[r] \ar[ur]|{\circlearrowleft} & G \ar[u] & }$$

$$\xymatrix{ A \ar[r] \ar@(ur,ul)[rr] & B \ar[r] & C \ar@(dl,dr)[l] }$$

$$ \mbox{aaa aaa no noのののの許すま}\\ \mbox{あいうえおかきくけこ さしすせそ たちてうってゆゆゆ} $$

1

2

3

4

5
6
$$hoge hoge hoge hoge hoge {\mathscr a}$$ $${\mathscr a}$$

$a <- a > b < c -> d$

$$a <- a > b < c -> d$$

参考

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment