Last active
November 24, 2022 05:14
-
-
Save leifvan/e167283633db0200f173b4d5d89427c6 to your computer and use it in GitHub Desktop.
A wrapper for the `sklearn.gaussian_process.kernels.Matern` kernel that implements the kernel-level transformation of parameters as described by Garrido-Merchán and Hernández-Lobato in "Dealing with Categorical and Integer-valued Variables in Bayesian Optimization with Gaussian Processes"
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn.gaussian_process.kernels import Matern | |
from collections import defaultdict | |
class WrappedMatern(Matern): | |
def __init__(self, param_types, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5): | |
self.param_types = param_types | |
super(WrappedMatern, self).__init__(length_scale, length_scale_bounds, nu) | |
def _transform(self, X): | |
# we collect the positions of the categorical variables in this dict | |
categorical_group_indices = defaultdict(list) | |
for i, ptype in enumerate(self.param_types): | |
if ptype == 'continuous': | |
pass # do nothing | |
elif ptype == 'discrete': | |
X[:, i] = np.floor(X[:, i]) | |
else: | |
categorical_group_indices[ptype].append(i) | |
# set binary max for categorical groups | |
for indices in categorical_group_indices.values(): | |
max_col = np.argmax(X[:, indices], axis=1) | |
X[:, indices] = 0 | |
X[range(X.shape[0]), max_col] = 1 | |
return X | |
def __call__(self, X, Y=None, eval_gradient=False): | |
X = self._transform(X) | |
if Y is not None: | |
Y = self._transform(Y) | |
return super(WrappedMatern, self).__call__(X, Y, eval_gradient) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment