Skip to content

Instantly share code, notes, and snippets.

@leifvan
Last active November 24, 2022 05:14
Show Gist options
  • Save leifvan/e167283633db0200f173b4d5d89427c6 to your computer and use it in GitHub Desktop.
Save leifvan/e167283633db0200f173b4d5d89427c6 to your computer and use it in GitHub Desktop.
A wrapper for the `sklearn.gaussian_process.kernels.Matern` kernel that implements the kernel-level transformation of parameters as described by Garrido-Merchán and Hernández-Lobato in "Dealing with Categorical and Integer-valued Variables in Bayesian Optimization with Gaussian Processes"
import numpy as np
from sklearn.gaussian_process.kernels import Matern
from collections import defaultdict
class WrappedMatern(Matern):
def __init__(self, param_types, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5):
self.param_types = param_types
super(WrappedMatern, self).__init__(length_scale, length_scale_bounds, nu)
def _transform(self, X):
# we collect the positions of the categorical variables in this dict
categorical_group_indices = defaultdict(list)
for i, ptype in enumerate(self.param_types):
if ptype == 'continuous':
pass # do nothing
elif ptype == 'discrete':
X[:, i] = np.floor(X[:, i])
else:
categorical_group_indices[ptype].append(i)
# set binary max for categorical groups
for indices in categorical_group_indices.values():
max_col = np.argmax(X[:, indices], axis=1)
X[:, indices] = 0
X[range(X.shape[0]), max_col] = 1
return X
def __call__(self, X, Y=None, eval_gradient=False):
X = self._transform(X)
if Y is not None:
Y = self._transform(Y)
return super(WrappedMatern, self).__call__(X, Y, eval_gradient)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment