#Non-mathematical Introductions
- http://gcn.com/articles/2014/01/09/topographical-data-analysis.aspx
- https://www.simonsfoundation.org/quanta/20131004-the-mathematical-shape-of-things-to-come/
#Videos
| library(RemixAutoML) | |
| library(data.table) | |
| ########################################### | |
| # Prepare data for AutoTS()---- | |
| ########################################### | |
| # Load Walmart Data from Dropbox---- | |
| data <- data.table::fread("https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1") |
| Sub WorkbooksSaveAsCsvToFolder() | |
| 'UpdatebyExtendoffice20181031 | |
| Dim xObjWB As Workbook | |
| Dim xObjWS As Worksheet | |
| Dim xStrEFPath As String | |
| Dim xStrEFFile As String | |
| Dim xObjFD As FileDialog | |
| Dim xObjSFD As FileDialog | |
| Dim xStrSPath As String | |
| Dim xStrCSVFName As String |
| from bs4 import BeautifulSoup | |
| import requests | |
| import requests.exceptions | |
| from urllib.parse import urlsplit | |
| from urllib.parse import urlparse | |
| from collections import deque | |
| import re | |
| url = "https://scrapethissite.com" | |
| # a queue of urls to be crawled |
| nobs <- 4000 | |
| pb <- round(runif(n=1, min=0.1, max=0.8),1) | |
| August <- rbinom(n=nobs, size=1, prob=pb) | |
| pb <- round(runif(n=1, min=0.1, max=0.8),1) | |
| September <- rbinom(n=nobs, size=1, prob=pb) | |
| pb <- round(runif(n=1, min=0.1, max=0.8),1) | |
| October <- rbinom(n=nobs, size=1, prob=pb) | |
| pb <- round(runif(n=1, min=0.1, max=0.8),1) | |
| November <- rbinom(n=nobs, size=1, prob=pb) | |
| pb <- round(runif(n=1, min=0.1, max=0.8),1) |
#Non-mathematical Introductions
#Videos
| library(idbr) # devtools::install_github('walkerke/idbr') | |
| library(ggplot2) | |
| library(animation) | |
| library(dplyr) | |
| library(ggthemes) | |
| idb_api_key("Put your Census API key here") | |
| male <- idb1('CH', 2016:2050, sex = 'male') %>% | |
| mutate(POP = POP * -1, |
| library(ggplot2); | |
| library(grid); | |
| data(iris) | |
| x <- jitter(iris[,c('Sepal.Length')]) | |
| y <- jitter(iris[,c('Sepal.Width')]) | |
| z <- factor(iris[,c('Species')]) | |
| # The color blind palette without black: |
| """ | |
| Demonstrates how to use the blocking scheduler to schedule a job that executes on 3 second | |
| intervals. | |
| """ | |
| from datetime import datetime | |
| import os | |
| from apscheduler.schedulers.blocking import BlockingScheduler |
| My first examples with [***knitr***](http://yihui.name/knitr/) | |
| ----------------------------------------- | |
| Let's include some simple R code: | |
| ```{r} | |
| 1+2 | |
| ``` | |
| That worked. | |
| Let's include a plot: | |
| ```{r fig.width=4, fig.height=4} |
| ### DATA SECTION | |
| library(data.table) | |
| ## Read data with 'data.table::fread' | |
| input <- fread("wu03ew_v1.csv", select = 1:3) | |
| setnames(input, 1:3, new = c("origin", "destination","total")) | |
| ## Coordinates | |
| centroids <- fread("msoa_popweightedcentroids.csv") | |
| ## 'Code' is the key to be used in the joins |