Created
May 12, 2024 20:14
-
-
Save leo-aa88/24f4c2ad5aff261f28266a101ba9ca95 to your computer and use it in GitHub Desktop.
Study of correlation between average yearly sunspots and Guaíba river maximum heights
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib | |
import pandas as pd | |
from scipy.stats import pearsonr | |
from sklearn.preprocessing import MinMaxScaler | |
matplotlib.use('Qt5Agg') # Or another interactive backend such as 'Qt5Agg', 'GTK3Agg', etc. | |
import matplotlib.pyplot as plt | |
# Create a time index | |
time_index = pd.date_range(start='1899-01-01', periods=116, freq='YE') | |
# Define the data | |
ts1 = { | |
'Year': [ | |
1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, | |
1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, | |
1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, | |
1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, | |
1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, | |
1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, | |
1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, | |
1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, | |
1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, | |
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
2009, 2010, 2011, 2012, 2013, 2014, 2015 | |
], | |
'Height': [ | |
2.60, 1.48, 0.98, 1.99, 1.45, 1.51, 2.50, 1.53, 2.00, 1.69, 1.52, | |
1.34, 2.05, 2.13, 1.19, 2.60, 1.91, 1.78, 0.98, 1.49, 2.21, 1.60, | |
1.58, 1.68, 1.75, 1.61, 1.31, 2.60, 1.56, 3.20, 2.05, 2.35, 1.70, | |
1.84, 1.34, 1.70, 1.64, 3.24, 2.51, 1.43, 1.60, 2.24, 4.75, 2.33, | |
1.60, 1.90, 1.26, 1.55, 1.67, 1.68, 1.71, 1.91, 2.10, 2.06, 2.52, | |
2.91, 1.80, 2.32, 2.08, 2.00, 1.99, 1.77, 2.16, 1.25, 2.67, 1.73, | |
2.72, 2.61, 3.13, 1.18, 1.36, 1.71, 1.72, 2.21, 1.93, 1.48, 1.64, | |
1.84, 2.13, 1.19, 1.66, 1.58, 1.54, 1.97, 2.32, 2.56, 1.96, 1.73, | |
2.36, 1.98, 2.00, 2.22, 1.45, 1.94, 2.07, 1.86, 1.96, 1.62, 1.96, | |
1.97, 1.46, 1.86, 2.40, 2.46, 1.74, 1.56, 2.10, 1.38, 2.44, 1.82, | |
2.23, 1.62, 2.04, 1.66, 2.24, 2.11, 2.94 | |
] | |
} | |
ts2 = { | |
'Year': [ | |
1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, | |
1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, | |
1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, | |
1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, | |
1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, | |
1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, | |
1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, | |
1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, | |
1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, | |
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
2009, 2010, 2011, 2012, 2013, 2014, 2015 | |
], | |
'Sunspot Number': [ | |
12.1, 9.5, 2.7, 5.0, 24.4, 42.0, 63.5, 53.8, 62.0, 48.5, 43.9, 18.6, 5.7, 3.6, | |
1.4, 9.6, 47.4, 57.1, 103.9, 80.6, 63.6, 37.6, 26.1, 14.2, 5.8, 16.7, 44.3, 63.9, | |
69.0, 77.8, 64.9, 35.7, 21.2, 11.1, 5.7, 8.7, 36.1, 79.7, 114.4, 109.6, 88.8, 67.8, | |
47.5, 30.6, 16.3, 9.6, 33.2, 92.6, 151.6, 136.3, 134.7, 83.9, 69.4, 31.5, 13.9, 4.4, | |
38.0, 141.7, 190.2, 184.8, 159.0, 112.3, 53.9, 37.6, 27.9, 10.2, 15.1, 47.0, 93.8, 105.9, | |
105.5, 104.5, 66.6, 68.9, 38.0, 34.5, 15.5, 12.6, 27.5, 92.5, 155.4, 154.6, 140.4, 115.9, | |
66.6, 45.9, 17.9, 13.4, 29.4, 100.2, 157.6, 142.6, 145.7, 94.3, 54.6, 29.9, 17.5, 8.6, | |
21.5, 64.3, 93.3, 119.6, 111.0, 104.0, 63.7, 40.4, 29.8, 15.4, 7.9, 2.4, 2.8, 15.6, 50.1, | |
52.8, 60.7, 74.7, 46.1 | |
] | |
} | |
# Create DataFrame | |
df1 = pd.DataFrame(ts1) | |
df1['Year'] = pd.to_datetime(df1['Year'], format='%Y') | |
df1.set_index('Year', inplace=True) | |
df2 = pd.DataFrame(ts2) | |
df2['Year'] = pd.to_datetime(df2['Year'], format='%Y') | |
df2.set_index('Year', inplace=True) | |
# Plotting | |
plt.figure(figsize=(10, 5)) | |
plt.plot(df1.index, df1['Height'], label='Time Series 1') | |
plt.plot(df2.index, df2['Sunspot Number'], label='Time Series 2') | |
plt.title('Comparison of Two Time Series') | |
plt.xlabel('Time') | |
plt.ylabel('Value') | |
plt.legend() | |
plt.show() | |
# Create a scaler object | |
min_max_scaler = MinMaxScaler() | |
# Fit and transform the data | |
df1['Height_min_max_scaled'] = min_max_scaler.fit_transform(df1[['Height']]) | |
df2['Sunspot_min_max_scaled'] = min_max_scaler.fit_transform(df2[['Sunspot Number']]) | |
# Plotting | |
plt.figure(figsize=(10, 5)) | |
plt.plot(df1.index, df1['Height_min_max_scaled'], label='Min-Max Normalized Height Time Series') | |
plt.plot(df2.index, df2['Sunspot_min_max_scaled'], label='Min-Max Normalized Sunspot Time Series') | |
plt.title('Comparison of Min-Max Normalized Time Series') | |
plt.xlabel('Time') | |
plt.ylabel('Normalized Value (0 to 1)') | |
plt.legend() | |
plt.savefig('min_max_normalized_time_series.png') # Saves the figure as an image file | |
plt.show() | |
combined_df = pd.merge(df1, df2, left_index=True, right_index=True, how='inner') | |
plt.figure(figsize=(10, 6)) | |
plt.scatter(combined_df['Height'], combined_df['Sunspot Number'], color='b', alpha=0.5) | |
plt.title('Relationship Between Heights and Sunspot Numbers') | |
plt.xlabel('Height (m)') | |
plt.ylabel('Sunspot Number') | |
plt.grid(True) | |
plt.show() | |
# Correlation calculation | |
correlation, _ = pearsonr(df1['Height'], df2['Sunspot Number']) | |
print(f'Pearson correlation coefficient: {correlation:.3f}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment