Last active
May 10, 2021 13:17
-
-
Save leo-pfeiffer/0405c66b1610db133d732daf38b0e251 to your computer and use it in GitHub Desktop.
ROC curve calculation and plot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
from decimal import Decimal | |
import matplotlib.pyplot as plt | |
from numpy import trapz | |
def create_roc_values(thresholds, scores, true_values): | |
""" | |
Calculate the points on a roc curve | |
""" | |
assert len(scores) == len(true_values) | |
x_values = [] | |
y_values = [] | |
if not len(thresholds): | |
thresholds = [i * 0.01 for i in range(101)] | |
for threshold in thresholds: | |
# predict based on threshold | |
predictions = [0 if x < threshold else 1 for x in scores] | |
tpr = calc_tpr(predictions, true_values) | |
fpr = calc_fpr(predictions, true_values) | |
# print(f"{round(threshold, 2)} - {round(fpr, 2)} - {round(tpr, 2)}") | |
x_values.append(fpr) | |
y_values.append(tpr) | |
return x_values, y_values | |
def calc_tpr(predictions, true_values) -> float: | |
""" | |
Calculate true positive rate. | |
tpr = tp / (tp + fn) | |
""" | |
assert len(predictions) == len(true_values) | |
tp = sum([p == 1 for p, t in zip(predictions, true_values) if t == 1]) | |
fn = sum([p == 0 for p, t in zip(predictions, true_values) if t == 1]) | |
return tp / (tp + fn) | |
def calc_fpr(predictions, true_values) -> float: | |
""" | |
Calculate false positive rate. | |
fpr = fp / (fp + tn) | |
""" | |
assert len(predictions) == len(true_values) | |
fp = sum([p == 1 for p, t in zip(predictions, true_values) if t == 0]) | |
tn = sum([p == 0 for p, t in zip(predictions, true_values) if t == 0]) | |
return fp / (fp + tn) | |
def create_plot(x_values, y_values): | |
""" | |
Plot a ROC curve. | |
""" | |
auc = -1 * trapz(y_values, x_values) | |
plt.style.use('ggplot') | |
plt.plot(x_values, y_values, linestyle='--', marker='o', lw=3, color='red') | |
plt.xlim([0, 1]) | |
plt.ylim([0, 1]) | |
plt.xlabel('FPR') | |
plt.ylabel('TPR') | |
plt.title('ROC curve, AUC = %.4f'%auc) | |
plt.show() | |
if __name__ == '__main__': | |
# example usage: | |
# python roc.py -s 0.9 0.8 0.7 0.7 0.6 0.5 0.4 0.3 0.2 0.1 -t 1 1 0 1 1 0 1 1 0 0 | |
cli=argparse.ArgumentParser() | |
cli.add_argument("-s", "--scores", nargs="*", type=Decimal, default=[]) | |
cli.add_argument("-t", "--true_values", nargs="*", type=int, default=[]) | |
cli.add_argument("-ts", "--thresholds", nargs="*", type=Decimal, default=[]) | |
args = cli.parse_args() | |
scores = args.scores | |
true_values = args.true_values | |
thresholds = args.thresholds | |
roc = create_roc_values(thresholds, scores, true_values) | |
create_plot(roc[0], roc[1]) | |
exit(0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment