Created
September 15, 2024 20:49
-
-
Save leonid-shevtsov/24f45279b7c5878f71f9f691a872895d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# translated from https://gitlab.com/manzhara157/nanobelts/-/blob/main/example.pas | |
import math | |
import os | |
import numpy | |
from contextlib import suppress | |
def clean_files(): | |
with suppress(FileNotFoundError): | |
os.remove("mean_abc_numpy.txt") | |
with suppress(FileNotFoundError): | |
os.remove("fmean_v_numpy.txt") | |
with suppress(FileNotFoundError): | |
os.remove("fd_numpy.txt") | |
with suppress(FileNotFoundError): | |
os.remove("fn_numpy.txt") | |
with suppress(FileNotFoundError): | |
os.remove("fp_numpy.txt") | |
with suppress(FileNotFoundError): | |
os.remove("fv_numpy.txt") | |
def save_data(t, n, mean_a, mean_b, mean_c, mean_v, d, p, sumv): | |
ln_t = math.log(t) | |
with open("mean_abc_numpy.txt", "a") as f: | |
f.write( | |
"%f %f %f %f\n" | |
% (ln_t, math.log(mean_a), math.log(mean_b), math.log(mean_c)) | |
) | |
with open("fmean_v_numpy.txt", "a") as f: | |
f.write("%f %f\n" % (ln_t, math.log(mean_v))) | |
with open("fd_numpy.txt", "a") as f: | |
f.write("%f %f\n" % (ln_t, math.log(d))) | |
with open("fn_numpy.txt", "a") as f: | |
f.write("%f %f\n" % (ln_t, math.log(n))) | |
with open("fp_numpy.txt", "a") as f: | |
f.write("%f %f\n" % (ln_t, math.log(p))) | |
with open("fv_numpy.txt", "a") as f: | |
f.write("%f %f\n" % (ln_t, math.log(sumv))) | |
def solve(): | |
n0 = 200000 | |
z = 12 | |
tmax = 1000000 | |
dt = 0.1 | |
ra_kinet = 1 | |
rb_kinet = 1 | |
rc_kinet = 1 | |
ra_therm = 1 | |
rb_therm = 1 | |
rc_therm = 1 | |
ra_bal = 1 | |
rb_bal = 1 | |
rc_bal = 1 | |
j = 0.008 | |
xeq = 0.01 | |
d0 = 0.01 | |
a0 = 200.0 | |
b0 = 200.0 | |
c0 = 200.0 | |
vtot = n0 * a0 * b0 * c0 * 100 | |
lich0 = 100 | |
t = 0 | |
d = d0 | |
ra_bal = 1 / 2 | |
rb_bal = math.sqrt(2) | |
rc_bal = math.sqrt(2) | |
clean_files() | |
# initialize data | |
a = a0 * numpy.random.rand(n0) | |
b = b0 * numpy.random.rand(n0) | |
c = c0 * numpy.random.rand(n0) | |
# a = numpy.fromfile("a.txt", sep="\n") | |
# b = numpy.fromfile("b.txt", sep="\n") | |
# c = numpy.fromfile("c.txt", sep="\n") | |
# initial v | |
v0 = numpy.sum(a * b * b) | |
lich = lich0 | |
while t < tmax: | |
t = t + dt | |
anew = a + dt * ra_kinet * ( | |
d - ((rc_therm / c) + (rb_therm / b) + (ra_bal / ra_kinet) * j) | |
) | |
bnew = b + dt * rb_kinet * ( | |
d - ((ra_therm / a) + (rc_therm / c) + (rb_bal / rb_kinet) * j) | |
) | |
cnew = c + dt * rc_kinet * ( | |
d - ((ra_therm / a) + (rb_therm / b) + (rc_bal / rc_kinet) * j) | |
) | |
positives = numpy.logical_and( | |
numpy.logical_and(anew >= 0, bnew >= 0), cnew >= 0 | |
) | |
a = numpy.extract(positives, anew) | |
b = numpy.extract(positives, bnew) | |
c = numpy.extract(positives, cnew) | |
sumv = numpy.sum(a * b * c) | |
sump = numpy.sum(a * b + b * c + c * a) | |
d = ((xeq + d0) * (1 - v0 / vtot) + v0 / vtot - sumv / vtot) / ( | |
1 - sumv / vtot | |
) - xeq | |
p = 2 * sump | |
if lich == lich0: | |
n = a.size | |
mean_a = numpy.mean(a) | |
mean_b = numpy.mean(b) | |
mean_c = numpy.mean(c) | |
mean_v = sumv / n | |
save_data(t, n, mean_a, mean_b, mean_c, mean_v, d, p, sumv) | |
lich = 0 | |
lich = lich + 1 | |
solve() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment