Skip to content

Instantly share code, notes, and snippets.

@leslie-fang-intel
Created March 29, 2025 12:44
Show Gist options
  • Save leslie-fang-intel/385da8a8be045d9355a25c7a8e8b710c to your computer and use it in GitHub Desktop.
Save leslie-fang-intel/385da8a8be045d9355a25c7a8e8b710c to your computer and use it in GitHub Desktop.
# TORCHINDUCTOR_FREEZING=1 TORCH_LOGS="+output_code" numactl -C 56-111 -m 1 python test.py
import torch
import time
import random
import numpy as np
local_seed= 2024
torch.manual_seed(local_seed) # Set PyTorch seed
np.random.seed(seed=local_seed) # Set Numpy seed
random.seed(local_seed) # Set the Python seed
dtype = torch.float32
autocast = True if dtype == torch.bfloat16 else False
class M(torch.nn.Module):
def __init__(self,):
super().__init__()
def forward(self, input):
relu = torch.relu(input)
output = torch.sum(relu, -1).atan()
return output
if __name__ == "__main__":
with torch.no_grad():
m = M().eval().to("xpu")
input = torch.randn(1, 1024).to(dtype).to("xpu")
# Compiler Path
# with torch.autocast(device_type="cpu", dtype=dtype, enabled=autocast):
ref_res = m(input)
# c_m = torch.compile(m)
# inductor_res = c_m(input)
# print(torch.allclose(ref_res, inductor_res, rtol=1e-3, atol=1e-3), flush=True)
res2 = torch.ops.aten.relu(input)
input2 = torch.randn(1, 1024).to(dtype).to("xpu")
# res = torch.ops.aten.mm(input, input2)
ref_res = input + input2
res = torch.ops.onednn.test_ll(input, input2)
# res_cpu = res.to("cpu")
print("ref_res is: {}".format(ref_res), flush=True)
print("res is: {}".format(res), flush=True)
torch.testing.assert_allclose(ref_res, res)
print("---- Done ----", flush=True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment