Created
August 29, 2024 01:07
-
-
Save leslie-fang-intel/4bb10046f7abe71e69d48b8a5d69bb48 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # TORCHINDUCTOR_FREEZING=1 TORCH_LOGS="+output_code" numactl -C 56-111 -m 1 python test_softmax.py | |
| import torch | |
| import time | |
| import random | |
| import numpy as np | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch._inductor.config | |
| torch._inductor.config.cpp.enable_kernel_profile=True | |
| torch._inductor.config.profiler_mark_wrapper_call = True | |
| local_seed= 2024 | |
| torch.manual_seed(local_seed) # Set PyTorch seed | |
| np.random.seed(seed=local_seed) # Set Numpy seed | |
| random.seed(local_seed) # Set the Python seed | |
| class Up(nn.Module): | |
| """Upscaling then double conv""" | |
| def __init__(self, in_channels, out_channels, bilinear=True): | |
| super().__init__() | |
| def forward(self, x): | |
| return x.contiguous() | |
| if __name__ == "__main__": | |
| with torch.no_grad(): | |
| m = Up(128, 64, True).eval() | |
| input = torch.randn(1, 2, 640, 959).to(memory_format=torch.channels_last) | |
| m(input) | |
| # Multi Thread | |
| warmup_steps = 50 | |
| steps = 100 | |
| # # Single Thread | |
| # warmup_steps = 10 | |
| # steps = 20 | |
| # Refer path | |
| with torch.autocast(device_type="cpu", dtype=torch.bfloat16, enabled=False): | |
| ref_res = m(input) | |
| for _ in range(warmup_steps): | |
| m(input) | |
| ref_start = time.time() | |
| for _ in range(steps): | |
| m(input) | |
| ref_end = time.time() | |
| # Compiler Path | |
| with torch.autocast(device_type="cpu", dtype=torch.bfloat16, enabled=False): | |
| c_m = torch.compile(m) | |
| inductor_res = c_m(input) | |
| for _ in range(warmup_steps): | |
| c_m(input) | |
| inductor_start = time.time() | |
| for step in range(steps): | |
| if step == 19: | |
| with torch.profiler.profile(on_trace_ready=torch.profiler.tensorboard_trace_handler("./int8_log")) as prof: | |
| c_m(input) | |
| print(prof.key_averages().table(sort_by="self_cpu_time_total")) | |
| else: | |
| c_m(input) | |
| inductor_end = time.time() | |
| print("ref time is: {}".format(ref_end - ref_start), flush=True) | |
| # print("jit time is: {}".format(jit_end - jit_start), flush=True) | |
| print("inductor time is: {}".format(inductor_end - inductor_start), flush=True) | |
| print(torch.allclose(ref_res, inductor_res, atol=0.01, rtol=0.01), flush=True) | |
| # print(torch.allclose(ref_res, inductor_res, atol=0.01, rtol=0.01), flush=True) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment