Created
October 30, 2024 11:21
-
-
Save leslie-fang-intel/986a42882ddf7c279668e15f36abd01f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # AOT ID: ['0_inference'] | |
| from ctypes import c_void_p, c_long, c_int | |
| import torch | |
| import math | |
| import random | |
| import os | |
| import tempfile | |
| from math import inf, nan | |
| from torch._inductor.hooks import run_intermediate_hooks | |
| from torch._inductor.utils import maybe_profile | |
| from torch._inductor.codegen.memory_planning import _align as align | |
| from torch import device, empty_strided | |
| from torch._inductor.async_compile import AsyncCompile | |
| from torch._inductor.select_algorithm import extern_kernels | |
| from torch._inductor.codegen.multi_kernel import MultiKernelCall | |
| aten = torch.ops.aten | |
| inductor_ops = torch.ops.inductor | |
| _quantized = torch.ops._quantized | |
| assert_size_stride = torch._C._dynamo.guards.assert_size_stride | |
| empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu | |
| empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda | |
| empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu | |
| reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor | |
| alloc_from_pool = torch.ops.inductor._alloc_from_pool | |
| async_compile = AsyncCompile() | |
| cpp_fused_index_put_0 = async_compile.cpp_pybinding(['const int64_t*', 'const float*', 'float*'], ''' | |
| #include "/tmp/torchinductor_leslie/2r/c2rnilspx43ivnzu4uieul65kx65dfhfbptbh5og4wk6rqebuxoo.h" | |
| extern "C" void kernel(const int64_t* in_ptr0, | |
| const float* in_ptr1, | |
| float* out_ptr0) | |
| { | |
| { | |
| #pragma GCC ivdep | |
| for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(2L); x0+=static_cast<int64_t>(1L)) | |
| { | |
| for(int64_t x1=static_cast<int64_t>(0L); x1<static_cast<int64_t>(32L); x1+=static_cast<int64_t>(16L)) | |
| { | |
| auto tmp0 = in_ptr0[static_cast<int64_t>(x0)]; | |
| auto tmp1 = static_cast<int64_t>(10); | |
| auto tmp2 = decltype(tmp0)(tmp0 + tmp1); | |
| auto tmp3 = 2L; | |
| auto tmp4 = c10::convert<int64_t>(tmp3); | |
| auto tmp5 = decltype(tmp2)(tmp2 + tmp4); | |
| auto tmp6 = tmp2 < 0; | |
| auto tmp7 = tmp6 ? tmp5 : tmp2; | |
| auto tmp8 = tmp7; | |
| auto tmp9 = c10::convert<int64_t>(tmp8); | |
| AOTI_TORCH_CHECK((0 <= tmp9) & (tmp9 < 2L), "index out of bounds: 0 <= tmp9 < 2L"); | |
| auto tmp11 = at::vec::Vectorized<float>::loadu(out_ptr0 + static_cast<int64_t>(x1 + (32L*tmp7)), static_cast<int64_t>(16)); | |
| auto tmp12 = tmp11 + tmp11; | |
| tmp12.store(out_ptr0 + static_cast<int64_t>(x1 + (32L*tmp7))); | |
| } | |
| } | |
| } | |
| } | |
| ''') | |
| async_compile.wait(globals()) | |
| del async_compile | |
| def call(args): | |
| arg0_1, arg1_1 = args | |
| args.clear() | |
| assert_size_stride(arg0_1, (1, 2), (2, 1)) | |
| assert_size_stride(arg1_1, (2, 32), (32, 1)) | |
| cpp_fused_index_put_0(arg0_1, arg1_1, arg1_1) | |
| del arg0_1 | |
| del arg1_1 | |
| return () | |
| def benchmark_compiled_module(times=10, repeat=10): | |
| from torch._dynamo.testing import rand_strided | |
| from torch._inductor.utils import print_performance | |
| arg0_1 = rand_strided((1, 2), (2, 1), device='cpu', dtype=torch.int64) | |
| arg1_1 = rand_strided((2, 32), (32, 1), device='cpu', dtype=torch.float32) | |
| fn = lambda: call([arg0_1, arg1_1]) | |
| return print_performance(fn, times=times, repeat=repeat) | |
| if __name__ == "__main__": | |
| from torch._inductor.wrapper_benchmark import compiled_module_main | |
| compiled_module_main('None', benchmark_compiled_module) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment