Last active
January 3, 2021 11:07
-
-
Save level14taken/346fce548297bc2ef576bd6fe6a0086f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class ConvBn2d(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=(3,3), stride=(1,1), padding=(1,1)): | |
super(ConvBn2d, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) | |
self.bn = nn.BatchNorm2d(out_channels) | |
def forward(self, z): | |
x = self.conv(z) | |
x = self.bn(x) | |
return x | |
class ChannelAttentionGate(nn.Module): | |
def __init__(self, channel, reduction=16): | |
super(ChannelAttentionGate, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction), | |
nn.ReLU(inplace=True), | |
nn.Linear(channel // reduction, channel), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
return y | |
class SpatialAttentionGate(nn.Module): | |
def __init__(self, channel, reduction=16): | |
super(SpatialAttentionGate, self).__init__() | |
self.fc1 = nn.Conv2d(channel, reduction, kernel_size=1, padding=0) | |
self.fc2 = nn.Conv2d(reduction, 1, kernel_size=1, padding=0) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = F.relu(x, inplace=True) | |
x = self.fc2(x) | |
x = torch.sigmoid(x) | |
return x | |
class Decoder(nn.Module): | |
def __init__(self, in_channels, channels, out_channels ): | |
super(Decoder, self).__init__() | |
self.conv1 = ConvBn2d(in_channels, channels, kernel_size=3, padding=1) | |
self.conv2 = ConvBn2d(channels, out_channels, kernel_size=3, padding=1) | |
self.cg= ChannelAttentionGate(out_channels) | |
self.sg= SpatialAttentionGate(out_channels) | |
def forward(self, x ): | |
x = F.upsample(x, scale_factor=2, mode='bilinear', align_corners=True)#False | |
x = F.relu(self.conv1(x),inplace=True) | |
x = F.relu(self.conv2(x),inplace=True) | |
g1= self.sg(x) | |
g2= self.cg(x) | |
x= g1*x+g2*x | |
return x | |
class UNetDPSV2(nn.Module): | |
def __init__(self ): | |
super().__init__() | |
self.resnet = torchvision.models.resnet34(pretrained=False) | |
self.conv_one = nn.Sequential( | |
self.resnet.conv1, | |
self.resnet.bn1, | |
self.resnet.relu, | |
)# 64 | |
self.encoder2 = self.resnet.layer1 # 64 | |
self.encoder3 = self.resnet.layer2 #128 | |
self.encoder4 = self.resnet.layer3 #256 | |
self.encoder5 = self.resnet.layer4 #512 | |
self.center = nn.Sequential( | |
nn.Conv2d(512, 512, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(512, 256, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
) | |
self.decoder5 = Decoder(512+256, 512, 64) | |
self.decoder4 = Decoder(64+256, 256, 64) | |
self.decoder3 = Decoder(64+128, 128, 64) | |
self.decoder2 = Decoder( 64+ 64, 64, 64) | |
self.conv0= nn.Conv2d(256,1,1) | |
self.pool= nn.AdaptiveAvgPool2d((1,1)) | |
self.dense=nn.Linear(512,1) | |
self.logit = nn.Sequential( | |
nn.Conv2d(256, 32, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(32, 1, kernel_size=1, padding=0), | |
) | |
def forward(self, x): | |
#batch_size,C,H,W = x.shape | |
x = self.conv_one(x) | |
e2 = self.encoder2( x) #; print('e2',e2.size()) | |
e3 = self.encoder3(e2) #; print('e3',e3.size()) | |
e4 = self.encoder4(e3) #; print('e4',e4.size()) | |
e5 = self.encoder5(e4) #; print('e5',e5.size()) | |
#; print('center',f.size()) | |
f = self.center(e5) | |
# print(e5.shape,f.shape) | |
d5 = self.decoder5(torch.cat([f, e5], 1)) #; print('d5',d5.size(),f.size()) | |
d4 = self.decoder4(torch.cat([d5, e4], 1)) #; print('d4',d4.size()) | |
d3= self.decoder3(torch.cat([d4, e3], 1)) #; print('d3',d3.size()) | |
d2 = self.decoder2(torch.cat([d3, e2], 1)) #; print('d2',d2.size()) | |
d2 = torch.cat((d2, | |
F.upsample(d3,scale_factor=2,mode='bilinear',align_corners=False), | |
F.upsample(d4,scale_factor=4,mode='bilinear',align_corners=False), | |
F.upsample(d5,scale_factor=8,mode='bilinear',align_corners=False), | |
),1) | |
final = self.logit(d2) #; print('logit',logit.size()) | |
no_mask= self.dense(self.pool(e5).view(-1,512)) | |
return [no_mask,final] | |
def get_model(): | |
model = UNetDPSV2() | |
model.load_state_dict(torch.load(f'./binary_0.pth',map_location= 'cpu'),strict=False) | |
model.eval() | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment