Created
December 29, 2020 10:13
-
-
Save level14taken/7abd8e6bfff432630cc1b411ef64bbb3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
kf = StratifiedKFold(10,shuffle=True,random_state=seed) | |
for fold, (trn_idx,val_idx) in enumerate(kf.split(file_list,coverage)): | |
print('****************************************************') | |
print('******************* fold %d *******************' % fold) | |
print('****************************************************') | |
file_list_train= [x for i,x in enumerate(file_list) if i in trn_idx] | |
file_list_val= [x for i,x in enumerate(file_list) if i in val_idx] | |
train = TGSSaltDataset(train_path, file_list_train,augment=transform_train) | |
val = TGSSaltDataset(train_path, file_list_val,augment= transform_test) | |
writer =SummaryWriter(FLAGS['log_dir']+'scse') | |
train_loader = torch.utils.data.DataLoader( | |
train, | |
batch_size=32, | |
num_workers=4, | |
drop_last=False,worker_init_fn=_init_fn) | |
test_loader = torch.utils.data.DataLoader( | |
val, | |
batch_size=FLAGS['batch_size']*5, | |
shuffle=False, | |
num_workers=2, | |
drop_last=False,worker_init_fn=_init_fn) | |
set_seed() | |
device = 'cuda' | |
model = model.to(device) | |
loss_fn= nn.BCEWithLogitsLoss() | |
optimizer= torch.optim.Adam(model.parameters(),lr=3e-4) | |
early_stopping = EarlyStopping(patience=80,path= './models/scse.pth', verbose=False) | |
scheduler= None | |
for epoch in range(1,21):############ | |
train_loss,train_iou,train_acc=train_loop_fn(train_loader) | |
print("Finished training epoch {}".format(epoch)) | |
val_loss,val_iou,val_acc= test_loop_fn(test_loader) | |
writer.add_scalars('loss_exp',{'train':train_loss,'val':val_loss},epoch) | |
writer.add_scalars('IOU',{'train':train_iou,'val':val_iou},epoch) | |
loss_fn = LovaszLoss() | |
optimizer= torch.optim.Adam(model.parameters(),lr=1e-4) | |
for epoch in range(21,91): | |
train_loss,train_iou,train_acc=train_loop_fn(train_loader) | |
print("Finished training epoch {}".format(epoch)) | |
val_loss,val_iou,val_acc= test_loop_fn(test_loader) | |
writer.add_scalars('loss_exp',{'train':train_loss,'val':val_loss},epoch) | |
writer.add_scalars('IOU',{'train':train_iou,'val':val_iou},epoch) | |
scheduler=torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=1e-4, max_lr=1e-3, step_size_up=560*2, step_size_down=None, mode='triangular2', cycle_momentum=False,last_epoch=-1) | |
for epoch in range(91,171): | |
train_loss,train_iou,train_acc=train_loop_fn(train_loader) | |
print("Finished training epoch {}".format(epoch)) | |
val_loss,val_iou,val_acc= test_loop_fn(test_loader) | |
writer.add_scalars('loss_exp',{'train':train_loss,'val':val_loss},epoch) | |
writer.add_scalars('IOU',{'train':train_iou,'val':val_iou},epoch) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment