Skip to content

Instantly share code, notes, and snippets.

@lewtun
Last active November 9, 2024 02:33
Show Gist options
  • Save lewtun/2a4c2569efeecdf5f68a7026249521f5 to your computer and use it in GitHub Desktop.
Save lewtun/2a4c2569efeecdf5f68a7026249521f5 to your computer and use it in GitHub Desktop.
SFT Llama 3.1 8B - full training vs LoRA vs QLoRA
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# Everything below was run on 8 x H100 GPUs
# Full training with packing (learns chat template)
accelerate launch --config_file=examples/accelerate_configs/deepspeed_zero3.yaml scratch/sft_llama.py \
--model_name_or_path meta-llama/Llama-3.1-8B \
--dataset_name trl-lib/Capybara \
--report_to wandb \
--learning_rate 2.0e-5 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 1 \
--gradient_checkpointing \
--output_dir Llama-3.1-8B-SFT-full-packing \
--logging_steps 10 \
--num_train_epochs 1 \
--push_to_hub \
--packing \
--bf16
# LoRA with packing and all-linear modules and lm_head and embed_tokens (learns chat template)
accelerate launch --config_file=examples/accelerate_configs/multi_gpu.yaml scratch/sft_llama.py \
--model_name_or_path meta-llama/Llama-3.1-8B \
--dataset_name trl-lib/Capybara \
--report_to wandb \
--learning_rate 2.0e-4 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 1 \
--gradient_checkpointing \
--ddp_find_unused_parameters False \
--output_dir Llama-3.1-8B-SFT-LoRA-packing \
--logging_steps 10 \
--num_train_epochs 1 \
--push_to_hub \
--use_peft \
--lora_r 16 \
--lora_alpha 32 \
--lora_target_modules all-linear \
--lora_modules_to_save lm_head embed_tokens \
--packing
# LoRA with packing and all-linear modules (doesn't learn chat template!)
accelerate launch --config_file=examples/accelerate_configs/multi_gpu.yaml scratch/sft_llama.py \
--model_name_or_path meta-llama/Llama-3.1-8B \
--dataset_name trl-lib/Capybara \
--report_to wandb \
--learning_rate 2.0e-4 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 1 \
--gradient_checkpointing \
--ddp_find_unused_parameters False \
--output_dir Llama-3.1-8B-SFT-LoRA-packing-no-saved-modules \
--logging_steps 10 \
--num_train_epochs 1 \
--push_to_hub \
--use_peft \
--lora_r 16 \
--lora_alpha 32 \
--lora_target_modules all-linear \
--packing
# QLoRA with packing (learns chat template)
accelerate launch --config_file=examples/accelerate_configs/multi_gpu.yaml scratch/sft_llama.py \
--model_name_or_path meta-llama/Llama-3.1-8B \
--dataset_name trl-lib/Capybara \
--report_to wandb \
--learning_rate 2.0e-4 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 1 \
--gradient_checkpointing \
--ddp_find_unused_parameters False \
--output_dir Llama-3.1-8B-SFT-QLoRA-packing \
--logging_steps 10 \
--num_train_epochs 1 \
--push_to_hub \
--use_peft \
--lora_r 16 \
--lora_alpha 32 \
--lora_target_modules all-linear \
--lora_modules_to_save lm_head embed_tokens \
--packing \
--load_in_4bit
"""
from datasets import load_dataset
from transformers import AutoTokenizer
from trl import (
ModelConfig,
SFTConfig,
SFTScriptArguments,
SFTTrainer,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
if __name__ == "__main__":
parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig))
script_args, training_args, model_config = parser.parse_args_and_config()
print(f"Script args: {script_args}\n")
print(f"Training args: {training_args}\n")
print(f"Model config: {model_config}\n")
################
# Model init kwargs & Tokenizer
################
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
torch_dtype=model_config.torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
training_args.model_init_kwargs = model_kwargs
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
)
tokenizer.pad_token = tokenizer.eos_token
print(f"Using pad token: {tokenizer.pad_token}")
# Set Llama chat template
tokenizer.chat_template = "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n"
################
# Dataset
################
dataset = load_dataset(script_args.dataset_name)
################
# Training
################
trainer = SFTTrainer(
model=model_config.model_name_or_path,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split],
tokenizer=tokenizer,
peft_config=get_peft_config(model_config),
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
@lewtun
Copy link
Author

lewtun commented Sep 30, 2024

Run inference tests with

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# model_name = "lewtun/Llama-3.1-8B-SFT-full-packing"
# model_name = "lewtun/Llama-3.1-8B-SFT-LoRA-packing"
# model_name = "lewtun/Llama-3.1-8B-SFT-LoRA-packing-no-saved-modules"
model_name = "lewtun/Llama-3.1-8B-SFT-QLoRA-packing"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")

print(f"EOS token: {tokenizer.eos_token}")
print(f"PAD token: {tokenizer.pad_token}")
print(f"Generation config: {model.generation_config}")

inputs = tokenizer.apply_chat_template([{"role": "user", "content": "What is the capital of France?"}], return_tensors="pt", add_generation_prompt=True).to("cuda")

eot_token_id = tokenizer.encode("<|eot_id|>", add_special_tokens=False)
print(f"EOT token: {tokenizer.decode(eot_token_id)}")

outputs = model.generate(inputs, max_new_tokens=128, do_sample=False, eos_token_id=eot_token_id, pad_token_id=tokenizer.eos_token_id)

print(tokenizer.decode(outputs[0], skip_special_tokens=False))

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment