Skip to content

Instantly share code, notes, and snippets.

@lewtun
Created September 24, 2024 20:45
Show Gist options
  • Save lewtun/e5e85b8ca4869c3e29f54f20eb0d62c6 to your computer and use it in GitHub Desktop.
Save lewtun/e5e85b8ca4869c3e29f54f20eb0d62c6 to your computer and use it in GitHub Desktop.
DPO with WinRateCallback
# flake8: noqa
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# Full training
python examples/scripts/dpo.py \
--dataset_name trl-lib/ultrafeedback_binarized \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--learning_rate 5.0e-7 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 1 \
--output_dir Qwen2-0.5B-DPO \
--no_remove_unused_columns --dataset_num_proc 12
# LoRA:
python examples/scripts/dpo.py \
--dataset_name trl-lib/ultrafeedback_binarized \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--learning_rate 5.0e-6 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 50 \
--output_dir Qwen2-0.5B-DPO \
--no_remove_unused_columns \
--use_peft \
--lora_r 32 \
--lora_alpha 16
"""
from trl.commands.cli_utils import DPOScriptArguments, TrlParser
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import PartialState
from trl import (
DPOConfig,
DPOTrainer,
ModelConfig,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
maybe_extract_prompt,
maybe_apply_chat_template,
)
if __name__ == "__main__":
parser = TrlParser((DPOScriptArguments, DPOConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
################
# Model & Tokenizer
###################
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
attn_implementation=model_config.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
peft_config = get_peft_config(model_config)
if peft_config is None:
ref_model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
else:
ref_model = None
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
if args.ignore_bias_buffers:
# torch distributed hack
model._ddp_params_and_buffers_to_ignore = [
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
]
################
# Dataset
################
dataset = load_dataset(args.dataset_name)
with PartialState().local_main_process_first():
dataset = dataset.map(maybe_extract_prompt, num_proc=training_args.dataset_num_proc)
dataset = dataset.map(
maybe_apply_chat_template, num_proc=training_args.dataset_num_proc, fn_kwargs={"tokenizer": tokenizer}
)
##########
# Training
################
trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset[args.dataset_train_split],
eval_dataset=dataset[args.dataset_test_split],
tokenizer=tokenizer,
peft_config=peft_config,
)
from trl.trainer.judges import OpenAIPairwiseJudge
from trl import WinRateCallback
from transformers import GenerationConfig
gen_config = GenerationConfig(max_new_tokens=1024, do_sample=True, temperature=1.0)
judge = OpenAIPairwiseJudge(model="gpt-4o-mini")
cbk = WinRateCallback(judge=judge, trainer=trainer, generation_config=gen_config, num_prompts=100)
trainer.add_callback(cbk)
trainer.train()
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
trainer.save_model(training_args.output_dir)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment