Created
September 24, 2024 20:45
-
-
Save lewtun/e5e85b8ca4869c3e29f54f20eb0d62c6 to your computer and use it in GitHub Desktop.
DPO with WinRateCallback
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# flake8: noqa | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
# Full training | |
python examples/scripts/dpo.py \ | |
--dataset_name trl-lib/ultrafeedback_binarized \ | |
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
--learning_rate 5.0e-7 \ | |
--num_train_epochs 1 \ | |
--per_device_train_batch_size 2 \ | |
--gradient_accumulation_steps 8 \ | |
--gradient_checkpointing \ | |
--logging_steps 25 \ | |
--eval_strategy steps \ | |
--eval_steps 1 \ | |
--output_dir Qwen2-0.5B-DPO \ | |
--no_remove_unused_columns --dataset_num_proc 12 | |
# LoRA: | |
python examples/scripts/dpo.py \ | |
--dataset_name trl-lib/ultrafeedback_binarized \ | |
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
--learning_rate 5.0e-6 \ | |
--num_train_epochs 1 \ | |
--per_device_train_batch_size 2 \ | |
--gradient_accumulation_steps 8 \ | |
--gradient_checkpointing \ | |
--logging_steps 25 \ | |
--eval_strategy steps \ | |
--eval_steps 50 \ | |
--output_dir Qwen2-0.5B-DPO \ | |
--no_remove_unused_columns \ | |
--use_peft \ | |
--lora_r 32 \ | |
--lora_alpha 16 | |
""" | |
from trl.commands.cli_utils import DPOScriptArguments, TrlParser | |
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
import torch | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from accelerate import PartialState | |
from trl import ( | |
DPOConfig, | |
DPOTrainer, | |
ModelConfig, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
maybe_extract_prompt, | |
maybe_apply_chat_template, | |
) | |
if __name__ == "__main__": | |
parser = TrlParser((DPOScriptArguments, DPOConfig, ModelConfig)) | |
args, training_args, model_config = parser.parse_args_and_config() | |
################ | |
# Model & Tokenizer | |
################### | |
torch_dtype = ( | |
model_config.torch_dtype | |
if model_config.torch_dtype in ["auto", None] | |
else getattr(torch, model_config.torch_dtype) | |
) | |
quantization_config = get_quantization_config(model_config) | |
model_kwargs = dict( | |
revision=model_config.model_revision, | |
attn_implementation=model_config.attn_implementation, | |
torch_dtype=torch_dtype, | |
use_cache=False if training_args.gradient_checkpointing else True, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs | |
) | |
peft_config = get_peft_config(model_config) | |
if peft_config is None: | |
ref_model = AutoModelForCausalLM.from_pretrained( | |
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs | |
) | |
else: | |
ref_model = None | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code | |
) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
if tokenizer.chat_template is None: | |
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
if args.ignore_bias_buffers: | |
# torch distributed hack | |
model._ddp_params_and_buffers_to_ignore = [ | |
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool | |
] | |
################ | |
# Dataset | |
################ | |
dataset = load_dataset(args.dataset_name) | |
with PartialState().local_main_process_first(): | |
dataset = dataset.map(maybe_extract_prompt, num_proc=training_args.dataset_num_proc) | |
dataset = dataset.map( | |
maybe_apply_chat_template, num_proc=training_args.dataset_num_proc, fn_kwargs={"tokenizer": tokenizer} | |
) | |
########## | |
# Training | |
################ | |
trainer = DPOTrainer( | |
model, | |
ref_model, | |
args=training_args, | |
train_dataset=dataset[args.dataset_train_split], | |
eval_dataset=dataset[args.dataset_test_split], | |
tokenizer=tokenizer, | |
peft_config=peft_config, | |
) | |
from trl.trainer.judges import OpenAIPairwiseJudge | |
from trl import WinRateCallback | |
from transformers import GenerationConfig | |
gen_config = GenerationConfig(max_new_tokens=1024, do_sample=True, temperature=1.0) | |
judge = OpenAIPairwiseJudge(model="gpt-4o-mini") | |
cbk = WinRateCallback(judge=judge, trainer=trainer, generation_config=gen_config, num_prompts=100) | |
trainer.add_callback(cbk) | |
trainer.train() | |
metrics = trainer.evaluate() | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
trainer.save_model(training_args.output_dir) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment