Last active
August 27, 2018 00:27
-
-
Save lextoumbourou/35d12809874240aff704c78dbb34c8bf to your computer and use it in GitHub Desktop.
Making predictions with a SequentialRNN model (Fast.ai)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Note: ensure you have the latest version of Torchtext by running: pip install torchtext --upgrade | |
rnn_model = text_data.get_model(opt_fn, 1500, bptt, emb_sz=em_sz, n_hid=nh, n_layers=nl, | |
dropout=0.1, dropouti=0.65, wdrop=0.5, dropoute=0.1, dropouth=0.3) | |
# ... | |
rnn_model.data.test_dl.src.sort = False | |
rnn_model.data.test_dl.src.sort_within_batch = False | |
rnn_model.data.test_dl.src.shuffle = False | |
probs = rnn_model.predict(is_test=True) | |
preds = np.argmax(probs, axis=1) | |
pd.DataFrame({ | |
'id': test_df['index'], | |
'sentiment': [LABEL_FIELD.vocab.itos[p] for p in preds]}).to_csv('./sub1.csv', index=False) | |
FileLink('./sub1.csv') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment