Created
June 6, 2021 09:05
-
-
Save lezwon/53109eafb3105eea756e8d92d11a58ab to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""label_image for tflite.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import time | |
import numpy as np | |
from PIL import Image | |
import tflite_runtime.interpreter as tflite | |
class Classifier: | |
def __init__(self, model_path, label_file, input_mean=127.5, input_std=127.5): | |
self.input_mean = input_mean | |
self.input_std = input_std | |
self.labels = self.load_labels(label_file) | |
self.interpreter = tflite.Interpreter(model_path=model_path) | |
self.interpreter.allocate_tensors() | |
self.input_details = self.interpreter.get_input_details() | |
self.output_details = self.interpreter.get_output_details() | |
# check the type of the input tensor | |
self.floating_model = self.input_details[0]['dtype'] == np.float32 | |
# NxHxWxC, H:1, W:2 | |
self.height = self.input_details[0]['shape'][1] | |
self.width = self.input_details[0]['shape'][2] | |
def load_labels(self, filename): | |
with open(filename, 'r') as f: | |
return [line.strip() for line in f.readlines()] | |
def infer(self, image): | |
""" | |
Infers the image in tf lite | |
Args: | |
image (string): Path of the image | |
Returns: | |
label (string): Detected label of the Image | |
""" | |
img = Image.open(image).resize((self.width, self.height)) | |
# add N dim | |
input_data = np.expand_dims(img, axis=0) | |
if self.floating_model: | |
input_data = (np.float32(input_data) - self.input_mean) / self.input_std | |
self.interpreter.set_tensor(self.input_details[0]['index'], input_data) | |
self.interpreter.invoke() | |
output_data = self.interpreter.get_tensor(self.output_details[0]['index']) | |
results = np.squeeze(output_data) | |
i = results.argmax() | |
idx = self.labels[i].index(" ") | |
return self.labels[i][idx+1:] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment