-
-
Save lgalke/e8e39f73a15065332c800e0839ddf4d4 to your computer and use it in GitHub Desktop.
Text feature extractor with okapi bm25 and delta idf
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# Authors: Olivier Grisel <[email protected]> | |
# Mathieu Blondel <[email protected]> | |
# Lars Buitinck <[email protected]> | |
# Robert Layton <[email protected]> | |
# Jochen Wersdörfer <[email protected]> | |
# Roman Sinayev <[email protected]> | |
# | |
# License: BSD 3 clause | |
""" | |
The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to | |
build feature vectors from text documents. | |
""" | |
from __future__ import unicode_literals | |
import array | |
from collections import Mapping, defaultdict | |
import numbers | |
from operator import itemgetter | |
import re | |
import unicodedata | |
import numpy as np | |
import scipy.sparse as sp | |
from ..base import BaseEstimator, TransformerMixin | |
from ..externals.six.moves import xrange | |
from ..preprocessing import normalize | |
from .hashing import FeatureHasher | |
from .stop_words import ENGLISH_STOP_WORDS | |
from ..utils import deprecated | |
from ..externals import six | |
__all__ = ['CountVectorizer', | |
'ENGLISH_STOP_WORDS', | |
'TfidfTransformer', | |
'TfidfVectorizer', | |
'strip_accents_ascii', | |
'strip_accents_unicode', | |
'strip_tags'] | |
def strip_accents_unicode(s): | |
"""Transform accentuated unicode symbols into their simple counterpart | |
Warning: the python-level loop and join operations make this | |
implementation 20 times slower than the strip_accents_ascii basic | |
normalization. | |
See also | |
-------- | |
strip_accents_ascii | |
Remove accentuated char for any unicode symbol that has a direct | |
ASCII equivalent. | |
""" | |
return ''.join([c for c in unicodedata.normalize('NFKD', s) | |
if not unicodedata.combining(c)]) | |
def strip_accents_ascii(s): | |
"""Transform accentuated unicode symbols into ascii or nothing | |
Warning: this solution is only suited for languages that have a direct | |
transliteration to ASCII symbols. | |
See also | |
-------- | |
strip_accents_unicode | |
Remove accentuated char for any unicode symbol. | |
""" | |
nkfd_form = unicodedata.normalize('NFKD', s) | |
return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') | |
def strip_tags(s): | |
"""Basic regexp based HTML / XML tag stripper function | |
For serious HTML/XML preprocessing you should rather use an external | |
library such as lxml or BeautifulSoup. | |
""" | |
return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) | |
def _check_stop_list(stop): | |
if stop == "english": | |
return ENGLISH_STOP_WORDS | |
elif isinstance(stop, six.string_types): | |
raise ValueError("not a built-in stop list: %s" % stop) | |
else: # assume it's a collection | |
return stop | |
class VectorizerMixin(object): | |
"""Provides common code for text vectorizers (tokenization logic).""" | |
_white_spaces = re.compile(r"\s\s+") | |
def decode(self, doc): | |
"""Decode the input into a string of unicode symbols | |
The decoding strategy depends on the vectorizer parameters. | |
""" | |
if self.input == 'filename': | |
with open(doc, 'rb') as fh: | |
doc = fh.read() | |
elif self.input == 'file': | |
doc = doc.read() | |
if isinstance(doc, bytes): | |
doc = doc.decode(self.encoding, self.decode_error) | |
if doc is np.nan: | |
raise ValueError("np.nan is an invalid document, expected byte or " | |
"unicode string.") | |
return doc | |
def _word_ngrams(self, tokens, stop_words=None): | |
"""Turn tokens into a sequence of n-grams after stop words filtering""" | |
# handle stop words | |
if stop_words is not None: | |
tokens = [w for w in tokens if w not in stop_words] | |
# handle token n-grams | |
min_n, max_n = self.ngram_range | |
if max_n != 1: | |
original_tokens = tokens | |
tokens = [] | |
n_original_tokens = len(original_tokens) | |
for n in xrange(min_n, | |
min(max_n + 1, n_original_tokens + 1)): | |
for i in xrange(n_original_tokens - n + 1): | |
tokens.append(" ".join(original_tokens[i: i + n])) | |
return tokens | |
def _char_ngrams(self, text_document): | |
"""Tokenize text_document into a sequence of character n-grams""" | |
# normalize white spaces | |
text_document = self._white_spaces.sub(" ", text_document) | |
text_len = len(text_document) | |
ngrams = [] | |
min_n, max_n = self.ngram_range | |
for n in xrange(min_n, min(max_n + 1, text_len + 1)): | |
for i in xrange(text_len - n + 1): | |
ngrams.append(text_document[i: i + n]) | |
return ngrams | |
def _char_wb_ngrams(self, text_document): | |
"""Whitespace sensitive char-n-gram tokenization. | |
Tokenize text_document into a sequence of character n-grams | |
excluding any whitespace (operating only inside word boundaries)""" | |
# normalize white spaces | |
text_document = self._white_spaces.sub(" ", text_document) | |
min_n, max_n = self.ngram_range | |
ngrams = [] | |
for w in text_document.split(): | |
w = ' ' + w + ' ' | |
w_len = len(w) | |
for n in xrange(min_n, max_n + 1): | |
offset = 0 | |
ngrams.append(w[offset:offset + n]) | |
while offset + n < w_len: | |
offset += 1 | |
ngrams.append(w[offset:offset + n]) | |
if offset == 0: # count a short word (w_len < n) only once | |
break | |
return ngrams | |
def build_preprocessor(self): | |
"""Return a function to preprocess the text before tokenization""" | |
if self.preprocessor is not None: | |
return self.preprocessor | |
# unfortunately python functools package does not have an efficient | |
# `compose` function that would have allowed us to chain a dynamic | |
# number of functions. However the cost of a lambda call is a few | |
# hundreds of nanoseconds which is negligible when compared to the | |
# cost of tokenizing a string of 1000 chars for instance. | |
noop = lambda x: x | |
# accent stripping | |
if not self.strip_accents: | |
strip_accents = noop | |
elif callable(self.strip_accents): | |
strip_accents = self.strip_accents | |
elif self.strip_accents == 'ascii': | |
strip_accents = strip_accents_ascii | |
elif self.strip_accents == 'unicode': | |
strip_accents = strip_accents_unicode | |
else: | |
raise ValueError('Invalid value for "strip_accents": %s' % | |
self.strip_accents) | |
if self.lowercase: | |
return lambda x: strip_accents(x.lower()) | |
else: | |
return strip_accents | |
def build_tokenizer(self): | |
"""Return a function that splits a string into a sequence of tokens""" | |
if self.tokenizer is not None: | |
return self.tokenizer | |
token_pattern = re.compile(self.token_pattern) | |
return lambda doc: token_pattern.findall(doc) | |
def get_stop_words(self): | |
"""Build or fetch the effective stop words list""" | |
return _check_stop_list(self.stop_words) | |
def build_analyzer(self): | |
"""Return a callable that handles preprocessing and tokenization""" | |
if callable(self.analyzer): | |
return self.analyzer | |
preprocess = self.build_preprocessor() | |
if self.analyzer == 'char': | |
return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) | |
elif self.analyzer == 'char_wb': | |
return lambda doc: self._char_wb_ngrams( | |
preprocess(self.decode(doc))) | |
elif self.analyzer == 'word': | |
stop_words = self.get_stop_words() | |
tokenize = self.build_tokenizer() | |
return lambda doc: self._word_ngrams( | |
tokenize(preprocess(self.decode(doc))), stop_words) | |
else: | |
raise ValueError('%s is not a valid tokenization scheme/analyzer' % | |
self.analyzer) | |
def _check_vocabulary(self): | |
vocabulary = self.vocabulary | |
if vocabulary is not None: | |
if not isinstance(vocabulary, Mapping): | |
vocab = {} | |
for i, t in enumerate(vocabulary): | |
if vocab.setdefault(t, i) != i: | |
msg = "Duplicate term in vocabulary: %r" % t | |
raise ValueError(msg) | |
vocabulary = vocab | |
else: | |
indices = set(six.itervalues(vocabulary)) | |
if len(indices) != len(vocabulary): | |
raise ValueError("Vocabulary contains repeated indices.") | |
for i in xrange(len(vocabulary)): | |
if i not in indices: | |
msg = ("Vocabulary of size %d doesn't contain index " | |
"%d." % (len(vocabulary), i)) | |
raise ValueError(msg) | |
if not vocabulary: | |
raise ValueError("empty vocabulary passed to fit") | |
self.fixed_vocabulary_ = True | |
self.vocabulary_ = dict(vocabulary) | |
else: | |
self.fixed_vocabulary_ = False | |
@property | |
@deprecated("The `fixed_vocabulary` attribute is deprecated and will be " | |
"removed in 0.18. Please use `fixed_vocabulary_` instead.") | |
def fixed_vocabulary(self): | |
return self.fixed_vocabulary_ | |
class HashingVectorizer(BaseEstimator, VectorizerMixin): | |
"""Convert a collection of text documents to a matrix of token occurrences | |
It turns a collection of text documents into a scipy.sparse matrix holding | |
token occurrence counts (or binary occurrence information), possibly | |
normalized as token frequencies if norm='l1' or projected on the euclidean | |
unit sphere if norm='l2'. | |
This text vectorizer implementation uses the hashing trick to find the | |
token string name to feature integer index mapping. | |
This strategy has several advantages: | |
- it is very low memory scalable to large datasets as there is no need to | |
store a vocabulary dictionary in memory | |
- it is fast to pickle and un-pickle as it holds no state besides the | |
constructor parameters | |
- it can be used in a streaming (partial fit) or parallel pipeline as there | |
is no state computed during fit. | |
There are also a couple of cons (vs using a CountVectorizer with an | |
in-memory vocabulary): | |
- there is no way to compute the inverse transform (from feature indices to | |
string feature names) which can be a problem when trying to introspect | |
which features are most important to a model. | |
- there can be collisions: distinct tokens can be mapped to the same | |
feature index. However in practice this is rarely an issue if n_features | |
is large enough (e.g. 2 ** 18 for text classification problems). | |
- no IDF weighting as this would render the transformer stateful. | |
The hash function employed is the signed 32-bit version of Murmurhash3. | |
Parameters | |
---------- | |
input: string {'filename', 'file', 'content'} | |
If 'filename', the sequence passed as an argument to fit is | |
expected to be a list of filenames that need reading to fetch | |
the raw content to analyze. | |
If 'file', the sequence items must have a 'read' method (file-like | |
object) that is called to fetch the bytes in memory. | |
Otherwise the input is expected to be the sequence strings or | |
bytes items are expected to be analyzed directly. | |
encoding : string, 'utf-8' by default. | |
If bytes or files are given to analyze, this encoding is used to | |
decode. | |
decode_error : {'strict', 'ignore', 'replace'} | |
Instruction on what to do if a byte sequence is given to analyze that | |
contains characters not of the given `encoding`. By default, it is | |
'strict', meaning that a UnicodeDecodeError will be raised. Other | |
values are 'ignore' and 'replace'. | |
strip_accents: {'ascii', 'unicode', None} | |
Remove accents during the preprocessing step. | |
'ascii' is a fast method that only works on characters that have | |
an direct ASCII mapping. | |
'unicode' is a slightly slower method that works on any characters. | |
None (default) does nothing. | |
analyzer: string, {'word', 'char', 'char_wb'} or callable | |
Whether the feature should be made of word or character n-grams. | |
Option 'char_wb' creates character n-grams only from text inside | |
word boundaries. | |
If a callable is passed it is used to extract the sequence of features | |
out of the raw, unprocessed input. | |
preprocessor: callable or None (default) | |
Override the preprocessing (string transformation) stage while | |
preserving the tokenizing and n-grams generation steps. | |
tokenizer: callable or None (default) | |
Override the string tokenization step while preserving the | |
preprocessing and n-grams generation steps. | |
ngram_range: tuple (min_n, max_n) | |
The lower and upper boundary of the range of n-values for different | |
n-grams to be extracted. All values of n such that min_n <= n <= max_n | |
will be used. | |
stop_words: string {'english'}, list, or None (default) | |
If 'english', a built-in stop word list for English is used. | |
If a list, that list is assumed to contain stop words, all of which | |
will be removed from the resulting tokens. | |
lowercase: boolean, default True | |
Convert all characters to lowercase before tokenizing. | |
token_pattern: string | |
Regular expression denoting what constitutes a "token", only used | |
if `analyzer == 'word'`. The default regexp selects tokens of 2 | |
or more alphanumeric characters (punctuation is completely ignored | |
and always treated as a token separator). | |
n_features : integer, optional, (2 ** 20) by default | |
The number of features (columns) in the output matrices. Small numbers | |
of features are likely to cause hash collisions, but large numbers | |
will cause larger coefficient dimensions in linear learners. | |
norm : 'l1', 'l2' or None, optional | |
Norm used to normalize term vectors. None for no normalization. | |
binary: boolean, False by default. | |
If True, all non zero counts are set to 1. This is useful for discrete | |
probabilistic models that model binary events rather than integer | |
counts. | |
dtype: type, optional | |
Type of the matrix returned by fit_transform() or transform(). | |
non_negative : boolean, optional | |
Whether output matrices should contain non-negative values only; | |
effectively calls abs on the matrix prior to returning it. | |
When True, output values can be interpreted as frequencies. | |
When False, output values will have expected value zero. | |
See also | |
-------- | |
CountVectorizer, TfidfVectorizer | |
""" | |
def __init__(self, input='content', encoding='utf-8', | |
decode_error='strict', strip_accents=None, | |
lowercase=True, preprocessor=None, tokenizer=None, | |
stop_words=None, token_pattern=r"(?u)\b\w\w+\b", | |
ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), | |
binary=False, norm='l2', non_negative=False, | |
dtype=np.float64): | |
self.input = input | |
self.encoding = encoding | |
self.decode_error = decode_error | |
self.strip_accents = strip_accents | |
self.preprocessor = preprocessor | |
self.tokenizer = tokenizer | |
self.analyzer = analyzer | |
self.lowercase = lowercase | |
self.token_pattern = token_pattern | |
self.stop_words = stop_words | |
self.n_features = n_features | |
self.ngram_range = ngram_range | |
self.binary = binary | |
self.norm = norm | |
self.non_negative = non_negative | |
self.dtype = dtype | |
def partial_fit(self, X, y=None): | |
"""Does nothing: this transformer is stateless. | |
This method is just there to mark the fact that this transformer | |
can work in a streaming setup. | |
""" | |
return self | |
def fit(self, X, y=None): | |
"""Does nothing: this transformer is stateless.""" | |
# triggers a parameter validation | |
self._get_hasher().fit(X, y=y) | |
return self | |
def transform(self, X, y=None): | |
"""Transform a sequence of documents to a document-term matrix. | |
Parameters | |
---------- | |
X : iterable over raw text documents, length = n_samples | |
Samples. Each sample must be a text document (either bytes or | |
unicode strings, file name or file object depending on the | |
constructor argument) which will be tokenized and hashed. | |
y : (ignored) | |
Returns | |
------- | |
X : scipy.sparse matrix, shape = (n_samples, self.n_features) | |
Document-term matrix. | |
""" | |
analyzer = self.build_analyzer() | |
X = self._get_hasher().transform(analyzer(doc) for doc in X) | |
if self.binary: | |
X.data.fill(1) | |
if self.norm is not None: | |
X = normalize(X, norm=self.norm, copy=False) | |
return X | |
# Alias transform to fit_transform for convenience | |
fit_transform = transform | |
def _get_hasher(self): | |
return FeatureHasher(n_features=self.n_features, | |
input_type='string', dtype=self.dtype, | |
non_negative=self.non_negative) | |
def _add_sparse_column(sparse,column): | |
import itertools | |
addition = sp.lil_matrix(sparse.shape) | |
sparse_coo = sparse.tocoo() | |
for i,j,v in itertools.izip(sparse_coo.row, sparse_coo.col, sparse_coo.data): | |
addition[i,j] = v + column[i,0] | |
return addition.tocsr() | |
def _class_frequencies(X, y): | |
"""Count the number of non-zero values for each class y in sparse X.""" | |
labels = np.unique(y) | |
if len(labels) > 2: | |
raise ValueError("Delta works only with binary classification problems") | |
# Indices for each type of labels in y | |
N1 = np.where(y == labels[0])[0] | |
N2 = np.where(y == labels[1])[0] | |
# Number of positive documents that each term appears on | |
df1 = np.bincount(X[N1].nonzero()[1], minlength=X.shape[1]) | |
# Number of negative documents that each term appears on | |
df2 = np.bincount(X[N2].nonzero()[1], minlength=X.shape[1]) | |
return N1.shape[0], df1, N2.shape[0], df2 | |
def _document_frequency(X): | |
"""Count the number of non-zero values for each feature in sparse X.""" | |
if sp.isspmatrix_csr(X): | |
return np.bincount(X.indices, minlength=X.shape[1]) | |
else: | |
return np.diff(sp.csc_matrix(X, copy=False).indptr) | |
class CountVectorizer(BaseEstimator, VectorizerMixin): | |
"""Convert a collection of text documents to a matrix of token counts | |
This implementation produces a sparse representation of the counts using | |
scipy.sparse.coo_matrix. | |
If you do not provide an a-priori dictionary and you do not use an analyzer | |
that does some kind of feature selection then the number of features will | |
be equal to the vocabulary size found by analyzing the data. | |
Parameters | |
---------- | |
input : string {'filename', 'file', 'content'} | |
If 'filename', the sequence passed as an argument to fit is | |
expected to be a list of filenames that need reading to fetch | |
the raw content to analyze. | |
If 'file', the sequence items must have a 'read' method (file-like | |
object) that is called to fetch the bytes in memory. | |
Otherwise the input is expected to be the sequence strings or | |
bytes items are expected to be analyzed directly. | |
encoding : string, 'utf-8' by default. | |
If bytes or files are given to analyze, this encoding is used to | |
decode. | |
decode_error : {'strict', 'ignore', 'replace'} | |
Instruction on what to do if a byte sequence is given to analyze that | |
contains characters not of the given `encoding`. By default, it is | |
'strict', meaning that a UnicodeDecodeError will be raised. Other | |
values are 'ignore' and 'replace'. | |
strip_accents : {'ascii', 'unicode', None} | |
Remove accents during the preprocessing step. | |
'ascii' is a fast method that only works on characters that have | |
an direct ASCII mapping. | |
'unicode' is a slightly slower method that works on any characters. | |
None (default) does nothing. | |
analyzer : string, {'word', 'char', 'char_wb'} or callable | |
Whether the feature should be made of word or character n-grams. | |
Option 'char_wb' creates character n-grams only from text inside | |
word boundaries. | |
If a callable is passed it is used to extract the sequence of features | |
out of the raw, unprocessed input. | |
preprocessor : callable or None (default) | |
Override the preprocessing (string transformation) stage while | |
preserving the tokenizing and n-grams generation steps. | |
tokenizer : callable or None (default) | |
Override the string tokenization step while preserving the | |
preprocessing and n-grams generation steps. | |
ngram_range : tuple (min_n, max_n) | |
The lower and upper boundary of the range of n-values for different | |
n-grams to be extracted. All values of n such that min_n <= n <= max_n | |
will be used. | |
stop_words : string {'english'}, list, or None (default) | |
If 'english', a built-in stop word list for English is used. | |
If a list, that list is assumed to contain stop words, all of which | |
will be removed from the resulting tokens. | |
If None, no stop words will be used. max_df can be set to a value | |
in the range [0.7, 1.0) to automatically detect and filter stop | |
words based on intra corpus document frequency of terms. | |
lowercase : boolean, True by default | |
Convert all characters to lowercase before tokenizing. | |
token_pattern : string | |
Regular expression denoting what constitutes a "token", only used | |
if `tokenize == 'word'`. The default regexp select tokens of 2 | |
or more alphanumeric characters (punctuation is completely ignored | |
and always treated as a token separator). | |
max_df : float in range [0.0, 1.0] or int, optional, 1.0 by default | |
When building the vocabulary ignore terms that have a document | |
frequency strictly higher than the given threshold (corpus-specific | |
stop words). | |
If float, the parameter represents a proportion of documents, integer | |
absolute counts. | |
This parameter is ignored if vocabulary is not None. | |
min_df : float in range [0.0, 1.0] or int, optional, 1 by default | |
When building the vocabulary ignore terms that have a document | |
frequency strictly lower than the given threshold. This value is also | |
called cut-off in the literature. | |
If float, the parameter represents a proportion of documents, integer | |
absolute counts. | |
This parameter is ignored if vocabulary is not None. | |
max_features : optional, None by default | |
If not None, build a vocabulary that only consider the top | |
max_features ordered by term frequency across the corpus. | |
This parameter is ignored if vocabulary is not None. | |
vocabulary : Mapping or iterable, optional | |
Either a Mapping (e.g., a dict) where keys are terms and values are | |
indices in the feature matrix, or an iterable over terms. If not | |
given, a vocabulary is determined from the input documents. Indices | |
in the mapping should not be repeated and should not have any gap | |
between 0 and the largest index. | |
binary : boolean, False by default. | |
If True, all non zero counts are set to 1. This is useful for discrete | |
probabilistic models that model binary events rather than integer | |
counts. | |
dtype : type, optional | |
Type of the matrix returned by fit_transform() or transform(). | |
Attributes | |
---------- | |
vocabulary_ : dict | |
A mapping of terms to feature indices. | |
stop_words_ : set | |
Terms that were ignored because | |
they occurred in either too many | |
(`max_df`) or in too few (`min_df`) documents. | |
This is only available if no vocabulary was given. | |
See also | |
-------- | |
HashingVectorizer, TfidfVectorizer | |
""" | |
def __init__(self, input='content', encoding='utf-8', | |
decode_error='strict', strip_accents=None, | |
lowercase=True, preprocessor=None, tokenizer=None, | |
stop_words=None, token_pattern=r"(?u)\b\w\w+\b", | |
ngram_range=(1, 1), analyzer='word', | |
max_df=1.0, min_df=1, max_features=None, | |
vocabulary=None, binary=False, dtype=np.int64): | |
self.input = input | |
self.encoding = encoding | |
self.decode_error = decode_error | |
self.strip_accents = strip_accents | |
self.preprocessor = preprocessor | |
self.tokenizer = tokenizer | |
self.analyzer = analyzer | |
self.lowercase = lowercase | |
self.token_pattern = token_pattern | |
self.stop_words = stop_words | |
self.max_df = max_df | |
self.min_df = min_df | |
if max_df < 0 or min_df < 0: | |
raise ValueError("negative value for max_df of min_df") | |
self.max_features = max_features | |
if max_features is not None: | |
if (not isinstance(max_features, numbers.Integral) or | |
max_features <= 0): | |
raise ValueError( | |
"max_features=%r, neither a positive integer nor None" | |
% max_features) | |
self.ngram_range = ngram_range | |
self.vocabulary = vocabulary | |
self.binary = binary | |
self.dtype = dtype | |
def _sort_features(self, X, vocabulary): | |
"""Sort features by name | |
Returns a reordered matrix and modifies the vocabulary in place | |
""" | |
sorted_features = sorted(six.iteritems(vocabulary)) | |
map_index = np.empty(len(sorted_features), dtype=np.int32) | |
for new_val, (term, old_val) in enumerate(sorted_features): | |
map_index[new_val] = old_val | |
vocabulary[term] = new_val | |
return X[:, map_index] | |
def _limit_features(self, X, vocabulary, high=None, low=None, | |
limit=None): | |
"""Remove too rare or too common features. | |
Prune features that are non zero in more samples than high or less | |
documents than low, modifying the vocabulary, and restricting it to | |
at most the limit most frequent. | |
This does not prune samples with zero features. | |
""" | |
if high is None and low is None and limit is None: | |
return X, set() | |
# Calculate a mask based on document frequencies | |
dfs = _document_frequency(X) | |
tfs = np.asarray(X.sum(axis=0)).ravel() | |
mask = np.ones(len(dfs), dtype=bool) | |
if high is not None: | |
mask &= dfs <= high | |
if low is not None: | |
mask &= dfs >= low | |
if limit is not None and mask.sum() > limit: | |
mask_inds = (-tfs[mask]).argsort()[:limit] | |
new_mask = np.zeros(len(dfs), dtype=bool) | |
new_mask[np.where(mask)[0][mask_inds]] = True | |
mask = new_mask | |
new_indices = np.cumsum(mask) - 1 # maps old indices to new | |
removed_terms = set() | |
for term, old_index in list(six.iteritems(vocabulary)): | |
if mask[old_index]: | |
vocabulary[term] = new_indices[old_index] | |
else: | |
del vocabulary[term] | |
removed_terms.add(term) | |
kept_indices = np.where(mask)[0] | |
if len(kept_indices) == 0: | |
raise ValueError("After pruning, no terms remain. Try a lower" | |
" min_df or a higher max_df.") | |
return X[:, kept_indices], removed_terms | |
def _count_vocab(self, raw_documents, fixed_vocab): | |
"""Create sparse feature matrix, and vocabulary where fixed_vocab=False | |
""" | |
if fixed_vocab: | |
vocabulary = self.vocabulary_ | |
else: | |
# Add a new value when a new vocabulary item is seen | |
vocabulary = defaultdict() | |
vocabulary.default_factory = vocabulary.__len__ | |
analyze = self.build_analyzer() | |
j_indices = _make_int_array() | |
indptr = _make_int_array() | |
indptr.append(0) | |
for doc in raw_documents: | |
for feature in analyze(doc): | |
try: | |
j_indices.append(vocabulary[feature]) | |
except KeyError: | |
# Ignore out-of-vocabulary items for fixed_vocab=True | |
continue | |
indptr.append(len(j_indices)) | |
if not fixed_vocab: | |
# disable defaultdict behaviour | |
vocabulary = dict(vocabulary) | |
if not vocabulary: | |
raise ValueError("empty vocabulary; perhaps the documents only" | |
" contain stop words") | |
# some Python/Scipy versions won't accept an array.array: | |
if j_indices: | |
j_indices = np.frombuffer(j_indices, dtype=np.intc) | |
else: | |
j_indices = np.array([], dtype=np.int32) | |
indptr = np.frombuffer(indptr, dtype=np.intc) | |
values = np.ones(len(j_indices)) | |
X = sp.csr_matrix((values, j_indices, indptr), | |
shape=(len(indptr) - 1, len(vocabulary)), | |
dtype=self.dtype) | |
X.sum_duplicates() | |
return vocabulary, X | |
def fit(self, raw_documents, y=None): | |
"""Learn a vocabulary dictionary of all tokens in the raw documents. | |
Parameters | |
---------- | |
raw_documents : iterable | |
An iterable which yields either str, unicode or file objects. | |
Returns | |
------- | |
self | |
""" | |
self.fit_transform(raw_documents) | |
return self | |
def fit_transform(self, raw_documents, y=None): | |
"""Learn the vocabulary dictionary and return term-document matrix. | |
This is equivalent to fit followed by transform, but more efficiently | |
implemented. | |
Parameters | |
---------- | |
raw_documents : iterable | |
An iterable which yields either str, unicode or file objects. | |
Returns | |
------- | |
X : array, [n_samples, n_features] | |
Document-term matrix. | |
""" | |
# We intentionally don't call the transform method to make | |
# fit_transform overridable without unwanted side effects in | |
# TfidfVectorizer. | |
self._check_vocabulary() | |
max_df = self.max_df | |
min_df = self.min_df | |
max_features = self.max_features | |
vocabulary, X = self._count_vocab(raw_documents, | |
self.fixed_vocabulary_) | |
if self.binary: | |
X.data.fill(1) | |
if not self.fixed_vocabulary_: | |
X = self._sort_features(X, vocabulary) | |
n_doc = X.shape[0] | |
max_doc_count = (max_df | |
if isinstance(max_df, numbers.Integral) | |
else max_df * n_doc) | |
min_doc_count = (min_df | |
if isinstance(min_df, numbers.Integral) | |
else min_df * n_doc) | |
if max_doc_count < min_doc_count: | |
raise ValueError( | |
"max_df corresponds to < documents than min_df") | |
X, self.stop_words_ = self._limit_features(X, vocabulary, | |
max_doc_count, | |
min_doc_count, | |
max_features) | |
self.vocabulary_ = vocabulary | |
return X | |
def transform(self, raw_documents): | |
"""Transform documents to document-term matrix. | |
Extract token counts out of raw text documents using the vocabulary | |
fitted with fit or the one provided to the constructor. | |
Parameters | |
---------- | |
raw_documents : iterable | |
An iterable which yields either str, unicode or file objects. | |
Returns | |
------- | |
X : sparse matrix, [n_samples, n_features] | |
Document-term matrix. | |
""" | |
if not hasattr(self, 'vocabulary_'): | |
self._check_vocabulary() | |
if not hasattr(self, 'vocabulary_') or len(self.vocabulary_) == 0: | |
raise ValueError("Vocabulary wasn't fitted or is empty!") | |
# use the same matrix-building strategy as fit_transform | |
_, X = self._count_vocab(raw_documents, fixed_vocab=True) | |
if self.binary: | |
X.data.fill(1) | |
return X | |
def inverse_transform(self, X): | |
"""Return terms per document with nonzero entries in X. | |
Parameters | |
---------- | |
X : {array, sparse matrix}, shape = [n_samples, n_features] | |
Returns | |
------- | |
X_inv : list of arrays, len = n_samples | |
List of arrays of terms. | |
""" | |
if sp.issparse(X): | |
# We need CSR format for fast row manipulations. | |
X = X.tocsr() | |
else: | |
# We need to convert X to a matrix, so that the indexing | |
# returns 2D objects | |
X = np.asmatrix(X) | |
n_samples = X.shape[0] | |
terms = np.array(list(self.vocabulary_.keys())) | |
indices = np.array(list(self.vocabulary_.values())) | |
inverse_vocabulary = terms[np.argsort(indices)] | |
return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() | |
for i in range(n_samples)] | |
def get_feature_names(self): | |
"""Array mapping from feature integer indices to feature name""" | |
if not hasattr(self, 'vocabulary_') or len(self.vocabulary_) == 0: | |
raise ValueError("Vocabulary wasn't fitted or is empty!") | |
return [t for t, i in sorted(six.iteritems(self.vocabulary_), | |
key=itemgetter(1))] | |
def _make_int_array(): | |
"""Construct an array.array of a type suitable for scipy.sparse indices.""" | |
return array.array(str("i")) | |
class TfidfTransformer(BaseEstimator, TransformerMixin): | |
"""Transform a count matrix to a normalized tf or tf-idf representation | |
Tf means term-frequency while tf-idf means term-frequency times inverse | |
document-frequency. This is a common term weighting scheme in information | |
retrieval, that has also found good use in document classification. | |
The goal of using tf-idf instead of the raw frequencies of occurrence of a | |
token in a given document is to scale down the impact of tokens that occur | |
very frequently in a given corpus and that are hence empirically less | |
informative than features that occur in a small fraction of the training | |
corpus. | |
The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, | |
instead of tf * idf. The effect of this is that terms with zero idf, i.e. | |
that occur in all documents of a training set, will not be entirely | |
ignored. The formulas used to compute tf and idf depend on parameter | |
settings that correspond to the SMART notation used in IR, as follows: | |
Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. | |
Idf is "t" when use_idf is given, "n" (none) otherwise. | |
Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. | |
Parameters | |
---------- | |
norm : 'l1', 'l2' or None, optional | |
Norm used to normalize term vectors. None for no normalization. | |
use_idf : boolean, optional | |
Enable inverse-document-frequency reweighting. | |
smooth_idf : boolean, optional | |
Smooth idf weights by adding one to document frequencies, as if an | |
extra document was seen containing every term in the collection | |
exactly once. Prevents zero divisions. | |
sublinear_tf : boolean, optional | |
Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). | |
References | |
---------- | |
.. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern | |
Information Retrieval. Addison Wesley, pp. 68-74.` | |
.. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). | |
Introduction to Information Retrieval. Cambridge University | |
Press, pp. 118-120.` | |
""" | |
def __init__(self, norm='l2', use_idf=True, use_bm25idf=False, smooth_idf=True, | |
delta_idf=False, sublinear_tf=False, bm25_tf=False): | |
self.norm = norm | |
self.use_idf = use_idf | |
self.use_bm25idf = use_bm25idf | |
self.smooth_idf = smooth_idf | |
# Required for delta idf's | |
self.delta_idf = delta_idf | |
self.sublinear_tf = sublinear_tf | |
self.bm25_tf = bm25_tf | |
self.k = 1.2 | |
self.b = 0.95 | |
def fit(self, X, y=None): | |
"""Learn the idf vector (global term weights) | |
Parameters | |
---------- | |
X : sparse matrix, [n_samples, n_features] | |
a matrix of term/token counts | |
""" | |
if not sp.issparse(X): | |
X = sp.csc_matrix(X) | |
if self.use_idf: | |
n_samples, n_features = X.shape | |
# BM25 idf | |
if self.use_bm25idf: | |
if self.delta_idf: | |
if y is None: | |
raise ValueError("Labels are needed to determine Delta idf") | |
N1, df1, N2, df2 = _class_frequencies(X, y) | |
delta_bm25idf = np.log(((N1 - df1 + 0.5) * df2 + 0.5) / ((N2 - df2 + 0.5) * df1 + 0.5)) | |
self._idf_diag = sp.spdiags(delta_bm25idf, | |
diags=0, m=n_features, n=n_features) | |
else: | |
# vanilla bm25 idf | |
df = _document_frequency(X) | |
# perform idf smoothing if required | |
df += int(self.smooth_idf) | |
n_samples += int(self.smooth_idf) | |
# log1p instead of log makes sure terms with zero idf don't get | |
# suppressed entirely | |
bm25idf = np.log((n_samples - df + 0.5) / (df + 0.5)) | |
self._idf_diag = sp.spdiags(bm25idf, | |
diags=0, m=n_features, n=n_features) | |
# Vanilla idf | |
elif self.delta_idf: | |
if y is None: | |
raise ValueError("Labels are needed to determine Delta idf") | |
N1, df1, N2, df2 = _class_frequencies(X, y) | |
delta_idf = np.log((df1 * float(N2) + int(self.smooth_idf)) / | |
(df2 * N1 + int(self.smooth_idf))) | |
# Maybe scale delta_idf to only positive values (for Naive Bayes, etc) ? | |
self._idf_diag = sp.spdiags(delta_idf, | |
diags=0, m=n_features, n=n_features) | |
else: | |
df = _document_frequency(X) | |
# perform idf smoothing if required | |
df += int(self.smooth_idf) | |
n_samples += int(self.smooth_idf) | |
# log1p instead of log makes sure terms with zero idf don't get | |
# suppressed entirely | |
idf = np.log(float(n_samples) / df) + 1.0 | |
self._idf_diag = sp.spdiags(idf, | |
diags=0, m=n_features, n=n_features) | |
return self | |
def transform(self, X, copy=True): | |
"""Transform a count matrix to a tf or tf-idf representation | |
Parameters | |
---------- | |
X : sparse matrix, [n_samples, n_features] | |
a matrix of term/token counts | |
Returns | |
------- | |
vectors : sparse matrix, [n_samples, n_features] | |
""" | |
if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): | |
# preserve float family dtype | |
X = sp.csr_matrix(X, copy=copy) | |
else: | |
# convert counts or binary occurrences to floats | |
X = sp.csr_matrix(X, dtype=np.float64, copy=copy) | |
n_samples, n_features = X.shape | |
if self.bm25_tf: | |
# First calculate the denominator of BM25 equation | |
# Sum the frequencies (sum of each row) to get the documents lengths | |
D = (X.sum(1) / np.average(X.sum(1))).reshape((n_samples, 1)) | |
D = ((1 - self.b) + self.b * D) * self.k | |
# D = sp.csr_matrix(np.multiply(np.ones((n_samples,n_features)),D)) | |
D_X = _add_sparse_column(X,D) | |
# Then perform the main division | |
# ...Find a better way to add a numpy ndarray to a sparse matrix | |
np.divide(X.data * (self.k + 1), D_X.data, X.data) | |
# np.divide(X.data * (self.k + 1), sp.csr_matrix(np.add(X.todense(), D)).data, X.data) | |
elif self.sublinear_tf: | |
np.log(X.data, X.data) | |
X.data += 1 | |
if self.use_idf: | |
if not hasattr(self, "_idf_diag"): | |
raise ValueError("idf vector not fitted") | |
expected_n_features = self._idf_diag.shape[0] | |
if n_features != expected_n_features: | |
raise ValueError("Input has n_features=%d while the model" | |
" has been trained with n_features=%d" % ( | |
n_features, expected_n_features)) | |
# *= doesn't work | |
X = X * self._idf_diag | |
if self.norm: | |
X = normalize(X, norm=self.norm, copy=False) | |
return X | |
@property | |
def idf_(self): | |
if hasattr(self, "_idf_diag"): | |
return np.ravel(self._idf_diag.sum(axis=0)) | |
else: | |
return None | |
class TfidfVectorizer(CountVectorizer): | |
"""Convert a collection of raw documents to a matrix of TF-IDF features. | |
Equivalent to CountVectorizer followed by TfidfTransformer. | |
Parameters | |
---------- | |
input : string {'filename', 'file', 'content'} | |
If 'filename', the sequence passed as an argument to fit is | |
expected to be a list of filenames that need reading to fetch | |
the raw content to analyze. | |
If 'file', the sequence items must have a 'read' method (file-like | |
object) that is called to fetch the bytes in memory. | |
Otherwise the input is expected to be the sequence strings or | |
bytes items are expected to be analyzed directly. | |
encoding : string, 'utf-8' by default. | |
If bytes or files are given to analyze, this encoding is used to | |
decode. | |
decode_error : {'strict', 'ignore', 'replace'} | |
Instruction on what to do if a byte sequence is given to analyze that | |
contains characters not of the given `encoding`. By default, it is | |
'strict', meaning that a UnicodeDecodeError will be raised. Other | |
values are 'ignore' and 'replace'. | |
strip_accents : {'ascii', 'unicode', None} | |
Remove accents during the preprocessing step. | |
'ascii' is a fast method that only works on characters that have | |
an direct ASCII mapping. | |
'unicode' is a slightly slower method that works on any characters. | |
None (default) does nothing. | |
analyzer : string, {'word', 'char'} or callable | |
Whether the feature should be made of word or character n-grams. | |
If a callable is passed it is used to extract the sequence of features | |
out of the raw, unprocessed input. | |
preprocessor : callable or None (default) | |
Override the preprocessing (string transformation) stage while | |
preserving the tokenizing and n-grams generation steps. | |
tokenizer : callable or None (default) | |
Override the string tokenization step while preserving the | |
preprocessing and n-grams generation steps. | |
ngram_range : tuple (min_n, max_n) | |
The lower and upper boundary of the range of n-values for different | |
n-grams to be extracted. All values of n such that min_n <= n <= max_n | |
will be used. | |
stop_words : string {'english'}, list, or None (default) | |
If a string, it is passed to _check_stop_list and the appropriate stop | |
list is returned. 'english' is currently the only supported string | |
value. | |
If a list, that list is assumed to contain stop words, all of which | |
will be removed from the resulting tokens. | |
If None, no stop words will be used. max_df can be set to a value | |
in the range [0.7, 1.0) to automatically detect and filter stop | |
words based on intra corpus document frequency of terms. | |
lowercase : boolean, default True | |
Convert all characters to lowercase before tokenizing. | |
token_pattern : string | |
Regular expression denoting what constitutes a "token", only used | |
if `analyzer == 'word'`. The default regexp selects tokens of 2 | |
or more alphanumeric characters (punctuation is completely ignored | |
and always treated as a token separator). | |
max_df : float in range [0.0, 1.0] or int, optional, 1.0 by default | |
When building the vocabulary ignore terms that have a term frequency | |
strictly higher than the given threshold (corpus specific stop words). | |
If float, the parameter represents a proportion of documents, integer | |
absolute counts. | |
This parameter is ignored if vocabulary is not None. | |
min_df : float in range [0.0, 1.0] or int, optional, 1 by default | |
When building the vocabulary ignore terms that have a term frequency | |
strictly lower than the given threshold. | |
This value is also called cut-off in the literature. | |
If float, the parameter represents a proportion of documents, integer | |
absolute counts. | |
This parameter is ignored if vocabulary is not None. | |
max_features : optional, None by default | |
If not None, build a vocabulary that only consider the top | |
max_features ordered by term frequency across the corpus. | |
This parameter is ignored if vocabulary is not None. | |
vocabulary : Mapping or iterable, optional | |
Either a Mapping (e.g., a dict) where keys are terms and values are | |
indices in the feature matrix, or an iterable over terms. If not | |
given, a vocabulary is determined from the input documents. | |
binary : boolean, False by default. | |
If True, all non-zero term counts are set to 1. This does not mean | |
outputs will have only 0/1 values, only that the tf term in tf-idf | |
is binary. (Set idf and normalization to False to get 0/1 outputs.) | |
dtype : type, optional | |
Type of the matrix returned by fit_transform() or transform(). | |
norm : 'l1', 'l2' or None, optional | |
Norm used to normalize term vectors. None for no normalization. | |
use_idf : boolean, optional | |
Enable inverse-document-frequency reweighting. | |
smooth_idf : boolean, optional | |
Smooth idf weights by adding one to document frequencies, as if an | |
extra document was seen containing every term in the collection | |
exactly once. Prevents zero divisions. | |
sublinear_tf : boolean, optional | |
Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). | |
Attributes | |
---------- | |
idf_ : array, shape = [n_features], or None | |
The learned idf vector (global term weights) | |
when ``use_idf`` is set to True, None otherwise. | |
See also | |
-------- | |
CountVectorizer | |
Tokenize the documents and count the occurrences of token and return | |
them as a sparse matrix | |
TfidfTransformer | |
Apply Term Frequency Inverse Document Frequency normalization to a | |
sparse matrix of occurrence counts. | |
""" | |
def __init__(self, input='content', encoding='utf-8', | |
decode_error='strict', strip_accents=None, lowercase=True, | |
preprocessor=None, tokenizer=None, analyzer='word', | |
stop_words=None, token_pattern=r"(?u)\b\w\w+\b", | |
ngram_range=(1, 1), max_df=1.0, min_df=1, | |
max_features=None, vocabulary=None, binary=False, | |
dtype=np.int64, norm='l2', use_idf=True, use_bm25idf = False, | |
smooth_idf=True, delta_idf=False, sublinear_tf=False, bm25_tf=False): | |
super(TfidfVectorizer, self).__init__( | |
input=input, encoding=encoding, decode_error=decode_error, | |
strip_accents=strip_accents, lowercase=lowercase, | |
preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, | |
stop_words=stop_words, token_pattern=token_pattern, | |
ngram_range=ngram_range, max_df=max_df, min_df=min_df, | |
max_features=max_features, vocabulary=vocabulary, binary=binary, | |
dtype=dtype) | |
self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, | |
use_bm25idf=use_bm25idf, | |
smooth_idf=smooth_idf, | |
delta_idf=delta_idf, | |
sublinear_tf=sublinear_tf, | |
bm25_tf=bm25_tf) | |
# Broadcast the TF-IDF parameters to the underlying transformer instance | |
# for easy grid search and repr | |
@property | |
def norm(self): | |
return self._tfidf.norm | |
@norm.setter | |
def norm(self, value): | |
self._tfidf.norm = value | |
@property | |
def use_idf(self): | |
return self._tfidf.use_idf | |
@use_idf.setter | |
def use_idf(self, value): | |
self._tfidf.use_idf = value | |
@property | |
def smooth_idf(self): | |
return self._tfidf.smooth_idf | |
@smooth_idf.setter | |
def smooth_idf(self, value): | |
self._tfidf.smooth_idf = value | |
@property | |
def sublinear_tf(self): | |
return self._tfidf.sublinear_tf | |
@sublinear_tf.setter | |
def sublinear_tf(self, value): | |
self._tfidf.sublinear_tf = value | |
@property | |
def idf_(self): | |
return self._tfidf.idf_ | |
def fit(self, raw_documents, y=None): | |
"""Learn vocabulary and idf from training set. | |
Parameters | |
---------- | |
raw_documents : iterable | |
an iterable which yields either str, unicode or file objects | |
Returns | |
------- | |
self : TfidfVectorizer | |
""" | |
X = super(TfidfVectorizer, self).fit_transform(raw_documents) | |
self._tfidf.fit(X) | |
return self | |
def fit_transform(self, raw_documents, y=None): | |
"""Learn vocabulary and idf, return term-document matrix. | |
This is equivalent to fit followed by transform, but more efficiently | |
implemented. | |
Parameters | |
---------- | |
raw_documents : iterable | |
an iterable which yields either str, unicode or file objects | |
Returns | |
------- | |
X : sparse matrix, [n_samples, n_features] | |
Tf-idf-weighted document-term matrix. | |
""" | |
X = super(TfidfVectorizer, self).fit_transform(raw_documents) | |
self._tfidf.fit(X,y) | |
# X is already a transformed view of raw_documents so | |
# we set copy to False | |
return self._tfidf.transform(X, copy=False) | |
def transform(self, raw_documents, copy=True): | |
"""Transform documents to document-term matrix. | |
Uses the vocabulary and document frequencies (df) learned by fit (or | |
fit_transform). | |
Parameters | |
---------- | |
raw_documents : iterable | |
an iterable which yields either str, unicode or file objects | |
Returns | |
------- | |
X : sparse matrix, [n_samples, n_features] | |
Tf-idf-weighted document-term matrix. | |
""" | |
X = super(TfidfVectorizer, self).transform(raw_documents) | |
return self._tfidf.transform(X, copy=False) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment