Created
June 25, 2017 03:28
-
-
Save lgmoneda/af32cb2d759d47c4b72bae641afc5014 to your computer and use it in GitHub Desktop.
Variance with Neural Network
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import random | |
import pandas as pd | |
import keras | |
from keras.models import Sequential | |
from keras.layers import Dense | |
from sklearn.cross_validation import train_test_split | |
def gen_variance_dataset(n_elements, n_features): | |
n_rows = int(n_elements / n_features) | |
data_matrix = np.random.randint(1, 100, n_rows * n_features).reshape((n_rows, n_features)) | |
data = pd.DataFrame(data_matrix, columns=["feature_" + str(i) for i in range(n_features)]) | |
data["target"] = np.std(data_matrix, axis=1) | |
return data | |
def build_model(n_features, n_hidden=10): | |
model = Sequential() | |
model.add(Dense(n_features, input_dim=n_features, kernel_initializer='normal', activation='relu')) | |
for i in range(n_hidden): | |
model.add(Dense(n_features, | |
activation="linear", | |
kernel_initializer="normal")) | |
model.add(Dense(1, kernel_initializer='normal')) | |
model.compile(loss='mean_squared_error', optimizer='adam') | |
return model | |
data = gen_variance_dataset(100000, 5) | |
data.to_csv("variance_data.csv") | |
features = [col for col in data.columns if col != "target"] | |
model = build_model(len(features), 12) | |
X_train, X_test, y_train, y_test = train_test_split(data[features], | |
data["target"], | |
test_size=0.2) | |
model.fit(X_train.as_matrix(), | |
y_train.as_matrix(), | |
epochs=1000, | |
batch_size=256, | |
verbose=1) | |
evaluate = model.evaluate(X_test.as_matrix(), | |
y_test.as_matrix()) | |
print("\n\nEvaluation {}".format(evaluate)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment