I hereby claim:
- I am lhr0909 on github.
- I am lhr0909 (https://keybase.io/lhr0909) on keybase.
- I have a public key ASBuOVwpHfFIg-c6qEl2uyn_ANt93FTFtv_XTVkSJ2bkeAo
To claim this, I am signing this object:
import csv | |
import json | |
import datetime | |
events = [] | |
# Open the CSV | |
with open("portable_user_history-2024-06-02-csv.csv", "r") as f: | |
reader = csv.DictReader( | |
f, |
📄 Document: 390ade4aa6f98236224082851331c670 | |
╭───────────┬──────────────────────────────────────────────────────────────────╮ | |
│ Attribute │ Value │ | |
├───────────┼──────────────────────────────────────────────────────────────────┤ | |
│ text │ Naw man │ | |
│ embedding │ ▄▄▄ │ | |
╰───────────┴──────────────────────────────────────────────────────────────────╯ | |
└── 🔶 Matches | |
├── 📄 Document: 626c8c7ed40279b4152aae627223e253 | |
│ ╭───────────┬──────────────────────────────────────────────────────────────────╮ |
from jina import Flow | |
from docarray import DocumentArray, Document | |
from executor import DIETClassifierExecutor | |
f = Flow().add( | |
uses='jinahub+docker://ConveRTFeaturizer/latest' | |
).add( | |
uses=DIETClassifierExecutor, uses_with={ 'model_path': './lightning_logs/version_4/checkpoints/epoch=999-step=1000.ckpt' } | |
) |
from typing import Any, Dict, List | |
import yaml | |
from pathlib import Path | |
from jina import Executor, requests | |
from docarray import DocumentArray, Document | |
from docarray.score import NamedScore | |
import torch | |
import torch.nn.functional as F | |
from diet_classifier.config import DIETClassifierConfig |
nlu: | |
- intent: greet | |
examples: | |
- Hello | |
- Hi | |
- Hey | |
- intent: affirm | |
examples: | |
- "Yes" | |
- "Yes, that's right" |
from typing import Dict, Any, List | |
from pathlib import Path | |
import yaml | |
import torch | |
import pytorch_lightning as pl | |
from torch.utils.data import DataLoader | |
from jina import Flow | |
from docarray import DocumentArray, Document | |
from conversational_sentence_encoder.vectorizers import SentenceEncoder | |
from jina import Executor, requests | |
from docarray import DocumentArray | |
class ConveRTFeaturizer(Executor): | |
def __init__(self, multiple_contexts=False, **kwargs): | |
super(ConveRTFeaturizer, self).__init__(**kwargs) | |
self.sentence_encoder = SentenceEncoder(multiple_contexts=multiple_contexts) | |
@requests |
import torch | |
from torch import optim, nn, Tensor | |
import torch.nn.functional as F | |
import pytorch_lightning as pl | |
from .config import DIETClassifierConfig | |
from .models import IntentClassifier | |
class DIETClassifier(pl.LightningModule): | |
def __init__(self, config: DIETClassifierConfig): |
import torch | |
from torch import nn, Tensor | |
from .config import DIETClassifierConfig | |
class IntentClassifier(nn.Module): | |
def __init__(self, config: DIETClassifierConfig): | |
super().__init__() | |
# Rasa's embedding layer is actually a "dense embedding layer" which is just a Keras dense layer | |
# equivalent to a PyTorch Linear layer. |
I hereby claim:
To claim this, I am signing this object: