I hereby claim:
- I am lhr0909 on github.
- I am lhr0909 (https://keybase.io/lhr0909) on keybase.
- I have a public key ASBuOVwpHfFIg-c6qEl2uyn_ANt93FTFtv_XTVkSJ2bkeAo
To claim this, I am signing this object:
| <ss cols="4" name="holdem_ring" rows="4" xpad="1" ypad="0"> | |
| <stat _rowcol="(1,1)" _stat_name="blank" click="" popup="default" tip=""/> | |
| <stat _rowcol="(1,2)" _stat_name="playershort" hudcolor="#7F9476" hudprefix="" hudsuffix="" popup="holdring_main" tip=""/> | |
| <stat _rowcol="(1,3)" _stat_name="n" hudcolor="#7F9476" hudprefix="(" hudsuffix=")" popup="pophands" tip=""/> | |
| <stat _rowcol="(1,4)" _stat_name="bbstack" click="" hudcolor="#7F9476" hudsuffix="bb" stat_hicolor="#D86C1D" stat_hith="130" stat_locolor="#5ec265" stat_loth="40" popup="default" tip=""/> | |
| <stat _rowcol="(2,1)" _stat_name="vpip_0" hudcolor="#ECEBD0" hudprefix="vpi:" popup="poppreflop" stat_locolor="#D86C1D" stat_hith="40" stat_hicolor="#5ec265" stat_loth="25" tip=""/> | |
| <stat _rowcol="(2,2)" _stat_name="pfr_0" hudcolor="#ECEBD0" hudprefix="pfr:" popup="poppreflop" stat_locolor="#D86C1D" stat_hith="35" stat_hicolor="#5ec265" stat_loth="20" tip=""/> | |
| <stat _rowcol="(2,3)" _stat_name="agg_fact_0" hudcolor="#ECEBD0" hudprefix="agg:" popup="popagg" |
| package hoolis.util; | |
| import java.net.IDN; | |
| import java.util.Arrays; | |
| import org.slf4j.Logger; | |
| import org.slf4j.LoggerFactory; | |
| import org.xbill.DNS.ARecord; | |
| import org.xbill.DNS.Lookup; | |
| import org.xbill.DNS.MXRecord; |
| function flattenObject(obj, prefix) { | |
| var toReturn = {}; | |
| for (var i in obj) { | |
| if (!obj.hasOwnProperty(i)) continue; | |
| if ((typeof obj[i]) == 'object') { | |
| var flatObject; | |
| if (prefix) { | |
| prefix = prefix + '[' + i + ']'; |
| package io.divby0.utils; | |
| import java.io.FilterInputStream; | |
| import java.io.IOException; | |
| import java.io.InputStream; | |
| import java.util.Iterator; | |
| import java.util.LinkedList; | |
| import java.util.Queue; | |
| /** |
| function asyncIterableToObservable<T>(iterable: AsyncIterable<T>): Observable<T> { | |
| return new Observable<T>( | |
| (observer: Subscriber<T>) => | |
| void (async () => { | |
| try { | |
| for await (const item of iterable) { | |
| if (observer.closed) { | |
| return; | |
| } | |
| observer.next(item); |
| import _ from 'lodash'; | |
| function flattenObject(obj: any): any { | |
| function _flattenPairs(obj: any, prefix: string): [string, any][] { | |
| // console.log(obj, prefix); | |
| if (!_.isObject(obj)) { | |
| return [prefix, obj]; | |
| } | |
| return _.toPairs(obj).reduce((final: [string, any][], nPair: [string, any]) => { |
I hereby claim:
To claim this, I am signing this object:
| import torch | |
| from torch import nn, Tensor | |
| from .config import DIETClassifierConfig | |
| class IntentClassifier(nn.Module): | |
| def __init__(self, config: DIETClassifierConfig): | |
| super().__init__() | |
| # Rasa's embedding layer is actually a "dense embedding layer" which is just a Keras dense layer | |
| # equivalent to a PyTorch Linear layer. |
| import torch | |
| from torch import optim, nn, Tensor | |
| import torch.nn.functional as F | |
| import pytorch_lightning as pl | |
| from .config import DIETClassifierConfig | |
| from .models import IntentClassifier | |
| class DIETClassifier(pl.LightningModule): | |
| def __init__(self, config: DIETClassifierConfig): |
| from conversational_sentence_encoder.vectorizers import SentenceEncoder | |
| from jina import Executor, requests | |
| from docarray import DocumentArray | |
| class ConveRTFeaturizer(Executor): | |
| def __init__(self, multiple_contexts=False, **kwargs): | |
| super(ConveRTFeaturizer, self).__init__(**kwargs) | |
| self.sentence_encoder = SentenceEncoder(multiple_contexts=multiple_contexts) | |
| @requests |