I hereby claim:
- I am lhr0909 on github.
- I am lhr0909 (https://keybase.io/lhr0909) on keybase.
- I have a public key ASBuOVwpHfFIg-c6qEl2uyn_ANt93FTFtv_XTVkSJ2bkeAo
To claim this, I am signing this object:
<ss cols="4" name="holdem_ring" rows="4" xpad="1" ypad="0"> | |
<stat _rowcol="(1,1)" _stat_name="blank" click="" popup="default" tip=""/> | |
<stat _rowcol="(1,2)" _stat_name="playershort" hudcolor="#7F9476" hudprefix="" hudsuffix="" popup="holdring_main" tip=""/> | |
<stat _rowcol="(1,3)" _stat_name="n" hudcolor="#7F9476" hudprefix="(" hudsuffix=")" popup="pophands" tip=""/> | |
<stat _rowcol="(1,4)" _stat_name="bbstack" click="" hudcolor="#7F9476" hudsuffix="bb" stat_hicolor="#D86C1D" stat_hith="130" stat_locolor="#5ec265" stat_loth="40" popup="default" tip=""/> | |
<stat _rowcol="(2,1)" _stat_name="vpip_0" hudcolor="#ECEBD0" hudprefix="vpi:" popup="poppreflop" stat_locolor="#D86C1D" stat_hith="40" stat_hicolor="#5ec265" stat_loth="25" tip=""/> | |
<stat _rowcol="(2,2)" _stat_name="pfr_0" hudcolor="#ECEBD0" hudprefix="pfr:" popup="poppreflop" stat_locolor="#D86C1D" stat_hith="35" stat_hicolor="#5ec265" stat_loth="20" tip=""/> | |
<stat _rowcol="(2,3)" _stat_name="agg_fact_0" hudcolor="#ECEBD0" hudprefix="agg:" popup="popagg" |
package hoolis.util; | |
import java.net.IDN; | |
import java.util.Arrays; | |
import org.slf4j.Logger; | |
import org.slf4j.LoggerFactory; | |
import org.xbill.DNS.ARecord; | |
import org.xbill.DNS.Lookup; | |
import org.xbill.DNS.MXRecord; |
function flattenObject(obj, prefix) { | |
var toReturn = {}; | |
for (var i in obj) { | |
if (!obj.hasOwnProperty(i)) continue; | |
if ((typeof obj[i]) == 'object') { | |
var flatObject; | |
if (prefix) { | |
prefix = prefix + '[' + i + ']'; |
package io.divby0.utils; | |
import java.io.FilterInputStream; | |
import java.io.IOException; | |
import java.io.InputStream; | |
import java.util.Iterator; | |
import java.util.LinkedList; | |
import java.util.Queue; | |
/** |
function asyncIterableToObservable<T>(iterable: AsyncIterable<T>): Observable<T> { | |
return new Observable<T>( | |
(observer: Subscriber<T>) => | |
void (async () => { | |
try { | |
for await (const item of iterable) { | |
if (observer.closed) { | |
return; | |
} | |
observer.next(item); |
import _ from 'lodash'; | |
function flattenObject(obj: any): any { | |
function _flattenPairs(obj: any, prefix: string): [string, any][] { | |
// console.log(obj, prefix); | |
if (!_.isObject(obj)) { | |
return [prefix, obj]; | |
} | |
return _.toPairs(obj).reduce((final: [string, any][], nPair: [string, any]) => { |
I hereby claim:
To claim this, I am signing this object:
import torch | |
from torch import nn, Tensor | |
from .config import DIETClassifierConfig | |
class IntentClassifier(nn.Module): | |
def __init__(self, config: DIETClassifierConfig): | |
super().__init__() | |
# Rasa's embedding layer is actually a "dense embedding layer" which is just a Keras dense layer | |
# equivalent to a PyTorch Linear layer. |
import torch | |
from torch import optim, nn, Tensor | |
import torch.nn.functional as F | |
import pytorch_lightning as pl | |
from .config import DIETClassifierConfig | |
from .models import IntentClassifier | |
class DIETClassifier(pl.LightningModule): | |
def __init__(self, config: DIETClassifierConfig): |
from conversational_sentence_encoder.vectorizers import SentenceEncoder | |
from jina import Executor, requests | |
from docarray import DocumentArray | |
class ConveRTFeaturizer(Executor): | |
def __init__(self, multiple_contexts=False, **kwargs): | |
super(ConveRTFeaturizer, self).__init__(**kwargs) | |
self.sentence_encoder = SentenceEncoder(multiple_contexts=multiple_contexts) | |
@requests |