Last active
August 29, 2024 00:39
-
-
Save lierdakil/3e1a7115c7154e21e39bc81b2a659354 to your computer and use it in GitHub Desktop.
HKTs in Rust (well, kind of)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
trait Functor { | |
type A; | |
type F<B>; | |
fn fmap<B>(self, f: impl Fn(Self::A) -> B) -> Self::F<B>; | |
} | |
impl<T> Functor for Option<T> { | |
type A = T; | |
type F<B> = Option<B>; | |
fn fmap<B>(self, f: impl Fn(Self::A) -> B) -> Self::F<B> { | |
self.map(f) | |
} | |
} | |
impl<T, E> Functor for Result<T, E> { | |
type A = T; | |
type F<B> = Result<B, E>; | |
fn fmap<B>(self, f: impl Fn(Self::A) -> B) -> Self::F<B> { | |
self.map(f) | |
} | |
} | |
impl<T> Functor for Vec<T> { | |
type A = T; | |
type F<B> = Vec<B>; | |
fn fmap<B>(self, f: impl Fn(Self::A) -> B) -> Self::F<B> { | |
self.into_iter().map(f).collect() | |
} | |
} | |
trait Applicative: Functor { | |
fn pure(v: Self::A) -> Self; | |
fn ap<B>(self, fns: Self::F<impl Fn(Self::A) -> B>) -> Self::F<B>; | |
} | |
impl<T> Applicative for Option<T> { | |
fn pure(v: Self::A) -> Self { | |
Some(v) | |
} | |
fn ap<B>(self, fns: Self::F<impl Fn(Self::A) -> B>) -> Self::F<B> { | |
match fns { | |
None => None, | |
Some(f) => self.map(f), | |
} | |
} | |
} | |
impl<T, E> Applicative for Result<T, E> { | |
fn pure(v: Self::A) -> Self { | |
Ok(v) | |
} | |
fn ap<B>(self, fns: Self::F<impl Fn(Self::A) -> B>) -> Self::F<B> { | |
match fns { | |
Err(e) => Err(e), | |
Ok(f) => self.map(f), | |
} | |
} | |
} | |
impl<T> Applicative for Vec<T> | |
where | |
Self: Clone, | |
{ | |
fn pure(v: Self::A) -> Self { | |
vec![v] | |
} | |
fn ap<B>(self, fns: Self::F<impl Fn(Self::A) -> B>) -> Self::F<B> { | |
fns.iter() | |
.flat_map(|f| self.clone().into_iter().map(f)) | |
.collect() | |
} | |
} | |
trait Monad: Applicative { | |
fn bind<B>(self, f: impl Fn(Self::A) -> Self::F<B>) -> Self::F<B>; | |
} | |
impl<T> Monad for Option<T> { | |
fn bind<B>(self, f: impl Fn(Self::A) -> Self::F<B>) -> Self::F<B> { | |
self.and_then(f) | |
} | |
} | |
impl<T, E> Monad for Result<T, E> { | |
fn bind<B>(self, f: impl Fn(Self::A) -> Self::F<B>) -> Self::F<B> { | |
self.and_then(f) | |
} | |
} | |
impl<T> Monad for Vec<T> | |
where | |
T: Clone, | |
{ | |
fn bind<B>(self, f: impl Fn(Self::A) -> Self::F<B>) -> Self::F<B> { | |
self.into_iter().flat_map(f).collect() | |
} | |
} | |
#[test] | |
fn test() { | |
let opt = Some(1); | |
assert_eq!(opt.fmap(|x| x + 1), Some(2)); | |
let v = vec![1, 2, 3]; | |
assert_eq!(v.fmap(|x| x + 1), vec![2, 3, 4]); | |
let opt1 = Option::pure(1); | |
let opt2 = Option::pure(2); | |
let fns = |x: u32| move |y: u32| x + y; | |
assert_eq!(opt2.ap(opt1.fmap(fns)), Some(3)); | |
let v1 = vec![1, 2, 3]; | |
let v2 = vec![1, 2, 3]; | |
let fns = |x: u32| move |y: u32| x * y; | |
assert_eq!(v2.ap(v1.fmap(fns)), vec![1, 2, 3, 2, 4, 6, 3, 6, 9]); | |
let v1 = vec![1, 2, 3]; | |
let v2 = vec![1, 2, 3]; | |
assert_eq!( | |
v1.bind(|x1| v2.clone().bind(|x2| Applicative::pure((x1, x2)))), | |
vec![ | |
(1, 1), | |
(1, 2), | |
(1, 3), | |
(2, 1), | |
(2, 2), | |
(2, 3), | |
(3, 1), | |
(3, 2), | |
(3, 3) | |
] | |
) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment