Created
April 20, 2011 05:05
-
-
Save lifthrasiir/930423 to your computer and use it in GitHub Desktop.
simplistic genetic TSP solver, circa May 2010 (you need tspdata.h to run it)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
tspsolve: tspsolve.c tspdata.h | |
gcc -O3 -s -mtune=core2 -std=c99 -W -Wall -lm tspsolve.c -o tspsolve |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <stdlib.h> | |
#include <stdint.h> | |
#include <string.h> | |
#include <time.h> | |
#include <math.h> | |
#include "tspdata.h" | |
#define NCITIES 140 | |
#define NPOPULATION 250 | |
// random number generator (multiply-with-carry, period 2^128-1) | |
static uint32_t rnd_x, rnd_y, rnd_z, rnd_w; | |
static void rnd_seed(int seed) { | |
srand(seed); | |
rnd_x = rand() * RAND_MAX + rand(); | |
rnd_y = rand() * RAND_MAX + rand(); | |
rnd_z = rand() * RAND_MAX + rand(); | |
rnd_w = rand() * RAND_MAX + rand(); | |
} | |
static int rnd_seedany(void) { | |
int seed = time(NULL); | |
rnd_seed(seed); | |
return seed; | |
} | |
static uint32_t rnd_gen(void) { | |
uint32_t t = (rnd_x ^ (rnd_x << 11)); | |
rnd_x = rnd_y; rnd_y = rnd_z; rnd_z = rnd_w; | |
rnd_w = (rnd_w ^ (rnd_w >> 19)) ^ (t ^ (t >> 8)); | |
return rnd_w; | |
} | |
typedef int pop[NCITIES]; // population type | |
double costn(int a, int b) { | |
return hypot(cities[a].x - cities[b].x, cities[a].y - cities[b].y); | |
} | |
double costp(const pop c) { | |
double sum = costn(c[0], c[NCITIES-1]); | |
for (int i = 1; i < NCITIES; ++i) { | |
sum += costn(c[i-1], c[i]); | |
} | |
return sum; | |
} | |
void populatep(pop c) { | |
for (int i = 0; i < NCITIES; ++i) { | |
c[i] = i; | |
} | |
for (int i = NCITIES - 1; i > 1; --i) { | |
// swap c[target] and c[i], where 0 <= target < i | |
unsigned target = rnd_gen() % (i-1); | |
int tmp = c[target]; | |
c[target] = c[i]; | |
c[i] = tmp; | |
} | |
} | |
void mutatep(pop c) { | |
unsigned target1 = rnd_gen() % NCITIES; | |
unsigned target2 = rnd_gen() % NCITIES; | |
int tmp = c[target1]; | |
c[target1] = c[target2]; | |
c[target2] = tmp; | |
} | |
// note: this function is one-way combination! | |
// it is possible that c1 == r, but not c2 == r | |
void crossoverp(const pop c1, const pop c2, pop r) { | |
uint32_t visited[NCITIES / 32 + 1] = {0}; | |
int pivot = rnd_gen() % NCITIES; // so c1[0..pivot-1] plus c2's other nodes are combined | |
for (int i = 0; i < pivot; ++i) { | |
r[i] = c1[i]; | |
visited[r[i] / 32] |= 1 << (r[i] % 32); | |
} | |
for (int i = pivot, j = 0; i < NCITIES && j < NCITIES; ++j) { | |
if ((visited[c2[j] / 32] >> (c2[j] % 32)) & 1) { | |
// visited, skip it | |
} else { | |
r[i++] = c2[j]; | |
} | |
} | |
} | |
void copyp(pop dest, const pop src) { | |
memcpy(dest, src, sizeof(pop)); | |
} | |
void printp(const pop c) { | |
int zeropoint = -1; | |
for (int i = 0; i < NCITIES; ++i) { | |
if (c[i] == 0) { | |
zeropoint = i; | |
break; | |
} | |
} | |
printf("(%d", c[zeropoint]); | |
for (int i = 1; i < NCITIES; ++i) printf(" %d", c[(i+zeropoint) % NCITIES]); | |
printf(")"); | |
} | |
typedef struct { | |
pop p[NPOPULATION]; | |
double f[NPOPULATION]; // fitness value set by updateg | |
double avgf; // average fitness value set by updateg | |
int ord[NPOPULATION]; // ascending order of fitness values (the best first) | |
} gen; // generation type | |
#define MUTATIONRATE 0.05 | |
#define CROSSOVERRATE 0.05 | |
#define REGENERATERATE 0.02 | |
void populateg(gen *g) { | |
for (int i = 0; i < NPOPULATION; ++i) { | |
populatep(g->p[i]); | |
g->f[i] = -1.0; | |
} | |
} | |
void crossoverg(gen *g) { | |
for (int i = 0; i < (int)(NPOPULATION * CROSSOVERRATE); ++i) { | |
unsigned target1 = rnd_gen() % NPOPULATION; | |
unsigned target2 = rnd_gen() % NPOPULATION; | |
if (target1 != target2) { | |
crossoverp(g->p[target1], g->p[target2], g->p[target1]); | |
g->f[target1] = -1.0; | |
} | |
} | |
} | |
void mutateg(gen *g) { | |
for (int i = 0; i < (int)(NPOPULATION * MUTATIONRATE); ++i) { | |
unsigned target = rnd_gen() % NPOPULATION; | |
mutatep(g->p[target]); | |
g->f[target] = -1.0; | |
} | |
} | |
// damn, qsort is not so modular! | |
static gen *comparep_g; | |
static int comparep(const void *a, const void *b) { | |
int i = *(const int *)a, j = *(const int *)b; | |
if (comparep_g->f[i] < comparep_g->f[j]) { | |
return -1; | |
} else if (comparep_g->f[i] > comparep_g->f[j]) { | |
return +1; | |
} else { | |
return 0; | |
} | |
} | |
void updateg(gen *g) { | |
double sumf = 0.0; | |
for (int i = 0; i < NPOPULATION; ++i) { | |
if (g->f[i] < 0.0) g->f[i] = costp(g->p[i]); | |
sumf += g->f[i]; | |
} | |
g->avgf = sumf / NPOPULATION; | |
// calculate the sorted order | |
for (int i = 0; i < NPOPULATION; ++i) { | |
g->ord[i] = i; | |
} | |
comparep_g = g; | |
qsort(g->ord, NPOPULATION, sizeof(int), &comparep); | |
} | |
void regenerateg(gen *g) { | |
for (int i = 0; i < (int)(NPOPULATION * REGENERATERATE); ++i) { | |
int good = g->ord[i]; | |
int bad = g->ord[(NPOPULATION-1)-i]; | |
copyp(g->p[bad], g->p[good]); // overwrite | |
g->f[bad] = g->f[good]; | |
} | |
} | |
#define MAXITERATION 100000000 | |
#define REPORTINTERVAL 10000 | |
int main(int argc, char **argv) { | |
int useinit = 0; | |
pop init; | |
if (argc == 1 + NCITIES) { | |
uint32_t appeared[NCITIES / 32 + 1] = {0}; | |
for (int i = 0; i < NCITIES; ++i) { | |
init[i] = atoi(argv[i+1]); | |
if (init[i] < 0 || init[i] >= NCITIES || ((appeared[init[i] / 32] >> (init[i] % 32)) & 1)) { | |
fprintf(stderr, "The initial population is incorrect!\n"); | |
return 1; | |
} | |
appeared[init[i] / 32] |= 1 << (init[i] % 32); | |
} | |
useinit = 1; | |
} | |
printf("Random seed: %08x\n", rnd_seedany()); | |
gen g; | |
populateg(&g); | |
double bestf = 999999999.0, prevbestf = -1.0; | |
pop best; | |
if (useinit) { | |
bestf = costp(init); | |
copyp(best, init); | |
} | |
for (int i = 0; i < MAXITERATION; ++i) { | |
crossoverg(&g); | |
mutateg(&g); | |
updateg(&g); | |
if (bestf > g.f[g.ord[0]]) { | |
bestf = g.f[g.ord[0]]; | |
copyp(best, g.p[g.ord[0]]); | |
} | |
if (i % REPORTINTERVAL == 0) { | |
printf("[generation %d] average fitness: %.8f / best fitness: %.8f / best fitness so far: %.8f\n", | |
i, g.avgf, g.f[g.ord[0]], bestf); | |
if (bestf != prevbestf) { | |
printp(best); | |
printf("\n"); | |
} | |
prevbestf = bestf; | |
// insert the best population in the middle of generation so it won't be removed by regenerateg | |
copyp(g.p[g.ord[NPOPULATION/2]], best); | |
g.f[g.ord[NPOPULATION/2]] = bestf; | |
} | |
regenerateg(&g); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment