Created
October 23, 2020 09:10
-
-
Save lijiansong/95a76d38d6234affd3883caf21f825c7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "VGG_VOC0712_SSD_300x300_deploy" | |
input: "data" | |
input_shape { | |
dim: 1 | |
dim: 3 | |
dim: 300 | |
dim: 300 | |
} | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
mean_value: 104 | |
mean_value: 117 | |
mean_value: 123 | |
std: 1 | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "ReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1_2" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "ReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2_2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "ReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3_3" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv4_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu4_3" | |
type: "ReLU" | |
bottom: "conv4_3" | |
top: "conv4_3" | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv4_3" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv5_1" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "conv5_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
dilation: 1 | |
} | |
} | |
layer { | |
name: "relu5_1" | |
type: "ReLU" | |
bottom: "conv5_1" | |
top: "conv5_1" | |
} | |
layer { | |
name: "conv5_2" | |
type: "Convolution" | |
bottom: "conv5_1" | |
top: "conv5_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
dilation: 1 | |
} | |
} | |
layer { | |
name: "relu5_2" | |
type: "ReLU" | |
bottom: "conv5_2" | |
top: "conv5_2" | |
} | |
layer { | |
name: "conv5_3" | |
type: "Convolution" | |
bottom: "conv5_2" | |
top: "conv5_3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
dilation: 1 | |
} | |
} | |
layer { | |
name: "relu5_3" | |
type: "ReLU" | |
bottom: "conv5_3" | |
top: "conv5_3" | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv5_3" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "fc6" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "fc6" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 1024 | |
pad: 6 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
dilation: 6 | |
} | |
} | |
layer { | |
name: "relu6" | |
type: "ReLU" | |
bottom: "fc6" | |
top: "fc6" | |
} | |
layer { | |
name: "fc7" | |
type: "Convolution" | |
bottom: "fc6" | |
top: "fc7" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu7" | |
type: "ReLU" | |
bottom: "fc7" | |
top: "fc7" | |
} | |
layer { | |
name: "conv6_1" | |
type: "Convolution" | |
bottom: "fc7" | |
top: "conv6_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv6_1_relu" | |
type: "ReLU" | |
bottom: "conv6_1" | |
top: "conv6_1" | |
} | |
layer { | |
name: "conv6_2" | |
type: "Convolution" | |
bottom: "conv6_1" | |
top: "conv6_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv6_2_relu" | |
type: "ReLU" | |
bottom: "conv6_2" | |
top: "conv6_2" | |
} | |
layer { | |
name: "conv7_1" | |
type: "Convolution" | |
bottom: "conv6_2" | |
top: "conv7_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv7_1_relu" | |
type: "ReLU" | |
bottom: "conv7_1" | |
top: "conv7_1" | |
} | |
layer { | |
name: "conv7_2" | |
type: "Convolution" | |
bottom: "conv7_1" | |
top: "conv7_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv7_2_relu" | |
type: "ReLU" | |
bottom: "conv7_2" | |
top: "conv7_2" | |
} | |
layer { | |
name: "conv8_1" | |
type: "Convolution" | |
bottom: "conv7_2" | |
top: "conv8_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv8_1_relu" | |
type: "ReLU" | |
bottom: "conv8_1" | |
top: "conv8_1" | |
} | |
layer { | |
name: "conv8_2" | |
type: "Convolution" | |
bottom: "conv8_1" | |
top: "conv8_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 0 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv8_2_relu" | |
type: "ReLU" | |
bottom: "conv8_2" | |
top: "conv8_2" | |
} | |
layer { | |
name: "conv9_1" | |
type: "Convolution" | |
bottom: "conv8_2" | |
top: "conv9_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv9_1_relu" | |
type: "ReLU" | |
bottom: "conv9_1" | |
top: "conv9_1" | |
} | |
layer { | |
name: "conv9_2" | |
type: "Convolution" | |
bottom: "conv9_1" | |
top: "conv9_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 0 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv9_2_relu" | |
type: "ReLU" | |
bottom: "conv9_2" | |
top: "conv9_2" | |
} | |
layer { | |
name: "conv4_3_norm" | |
type: "Normalize" | |
bottom: "conv4_3" | |
top: "conv4_3_norm" | |
norm_param { | |
across_spatial: false | |
scale_filler { | |
type: "constant" | |
value: 20.0 | |
} | |
channel_shared: false | |
} | |
} | |
layer { | |
name: "conv4_3_norm_mbox_loc" | |
type: "Convolution" | |
bottom: "conv4_3_norm" | |
top: "conv4_3_norm_mbox_loc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 16 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv4_3_norm_mbox_conf" | |
type: "Convolution" | |
bottom: "conv4_3_norm" | |
top: "conv4_3_norm_mbox_conf" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 84 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "fc7_mbox_loc" | |
type: "Convolution" | |
bottom: "fc7" | |
top: "fc7_mbox_loc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 24 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "fc7_mbox_conf" | |
type: "Convolution" | |
bottom: "fc7" | |
top: "fc7_mbox_conf" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 126 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv6_2_mbox_loc" | |
type: "Convolution" | |
bottom: "conv6_2" | |
top: "conv6_2_mbox_loc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 24 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv6_2_mbox_conf" | |
type: "Convolution" | |
bottom: "conv6_2" | |
top: "conv6_2_mbox_conf" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 126 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv7_2_mbox_loc" | |
type: "Convolution" | |
bottom: "conv7_2" | |
top: "conv7_2_mbox_loc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 24 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv7_2_mbox_conf" | |
type: "Convolution" | |
bottom: "conv7_2" | |
top: "conv7_2_mbox_conf" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 126 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv8_2_mbox_loc" | |
type: "Convolution" | |
bottom: "conv8_2" | |
top: "conv8_2_mbox_loc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 16 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv8_2_mbox_conf" | |
type: "Convolution" | |
bottom: "conv8_2" | |
top: "conv8_2_mbox_conf" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 84 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv9_2_mbox_loc" | |
type: "Convolution" | |
bottom: "conv9_2" | |
top: "conv9_2_mbox_loc" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 16 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv9_2_mbox_conf" | |
type: "Convolution" | |
bottom: "conv9_2" | |
top: "conv9_2_mbox_conf" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 84 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "detection_out" | |
type: "SsdDetection" | |
bottom: "conv4_3_norm_mbox_loc" | |
bottom: "fc7_mbox_loc" | |
bottom: "conv6_2_mbox_loc" | |
bottom: "conv7_2_mbox_loc" | |
bottom: "conv8_2_mbox_loc" | |
bottom: "conv9_2_mbox_loc" | |
bottom: "conv4_3_norm_mbox_conf" | |
bottom: "fc7_mbox_conf" | |
bottom: "conv6_2_mbox_conf" | |
bottom: "conv7_2_mbox_conf" | |
bottom: "conv8_2_mbox_conf" | |
bottom: "conv9_2_mbox_conf" | |
bottom: "conv4_3_norm" | |
bottom: "fc7" | |
bottom: "conv6_2" | |
bottom: "conv7_2" | |
bottom: "conv8_2" | |
bottom: "conv9_2" | |
bottom: "data" | |
top: "detection_out" | |
include { | |
phase: TEST | |
} | |
detection_output_param { | |
num_classes: 21 | |
share_location: true | |
background_label_id: 0 | |
nms_param { | |
nms_threshold: 0.449999988079 | |
top_k: 400 | |
} | |
save_output_param { | |
} | |
code_type: CENTER_SIZE | |
keep_top_k: 200 | |
confidence_threshold: 0.00999999977648 | |
} | |
priorbox_params { | |
min_size: 30.0 | |
max_size: 60.0 | |
aspect_ratio: 2.0 | |
flip: true | |
clip: false | |
variance: 0.10000000149 | |
variance: 0.10000000149 | |
variance: 0.20000000298 | |
variance: 0.20000000298 | |
step: 8.0 | |
offset: 0.5 | |
} | |
priorbox_params { | |
min_size: 60.0 | |
max_size: 111.0 | |
aspect_ratio: 2.0 | |
aspect_ratio: 3.0 | |
flip: true | |
clip: false | |
variance: 0.10000000149 | |
variance: 0.10000000149 | |
variance: 0.20000000298 | |
variance: 0.20000000298 | |
step: 16.0 | |
offset: 0.5 | |
} | |
priorbox_params { | |
min_size: 111.0 | |
max_size: 162.0 | |
aspect_ratio: 2.0 | |
aspect_ratio: 3.0 | |
flip: true | |
clip: false | |
variance: 0.10000000149 | |
variance: 0.10000000149 | |
variance: 0.20000000298 | |
variance: 0.20000000298 | |
step: 32.0 | |
offset: 0.5 | |
} | |
priorbox_params { | |
min_size: 162.0 | |
max_size: 213.0 | |
aspect_ratio: 2.0 | |
aspect_ratio: 3.0 | |
flip: true | |
clip: false | |
variance: 0.10000000149 | |
variance: 0.10000000149 | |
variance: 0.20000000298 | |
variance: 0.20000000298 | |
step: 64.0 | |
offset: 0.5 | |
} | |
priorbox_params { | |
min_size: 213.0 | |
max_size: 264.0 | |
aspect_ratio: 2.0 | |
flip: true | |
clip: false | |
variance: 0.10000000149 | |
variance: 0.10000000149 | |
variance: 0.20000000298 | |
variance: 0.20000000298 | |
step: 100.0 | |
offset: 0.5 | |
} | |
priorbox_params { | |
min_size: 264.0 | |
max_size: 315.0 | |
aspect_ratio: 2.0 | |
flip: true | |
clip: false | |
variance: 0.10000000149 | |
variance: 0.10000000149 | |
variance: 0.20000000298 | |
variance: 0.20000000298 | |
step: 300.0 | |
offset: 0.5 | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
http://dgschwend.github.io/netscope/#/gist/95a76d38d6234affd3883caf21f825c7