Skip to content

Instantly share code, notes, and snippets.

@lijiansong
Last active December 31, 2020 05:54
Show Gist options
  • Save lijiansong/f2da632130098a4b3684af4e481f9478 to your computer and use it in GitHub Desktop.
Save lijiansong/f2da632130098a4b3684af4e481f9478 to your computer and use it in GitHub Desktop.
name: "ZF"
input: "data"
input_shape {
dim: 1
dim: 3
dim: 720 #770 725
dim: 1280 #683 1285
}
input: "im_info"
input_shape {
dim: 1
dim: 3
}
#========= feature exact layers of resnet18 ============
layer {
bottom: "data"
top: "conv1-tmp"
name: "conv1"
type: "Convolution"
convolution_param {
mean_value: 104
mean_value: 117
mean_value: 123
num_output: 64
kernel_size: 7
pad: 3 # padding added
stride: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "conv1-tmp"
top: "conv1"
name: "bn_conv1"
type: "BatchNorm"
}
layer {
bottom: "conv1"
top: "conv1"
name: "scale_conv1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "conv1_relu"
type: "ReLU"
# relu_param { relu_threshold: 0.13055 }
}
layer {
bottom: "conv1"
top: "pool1"
name: "pool1"
type: "Pooling"
pooling_param {
kernel_size: 3
stride: 2
pool: MAX
}
}
layer {
bottom: "pool1"
top: "res2a_branch1"
name: "res2a_branch1"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "bn2a_branch1"
type: "BatchNorm"
}
layer {
bottom: "res2a_branch1"
top: "res2a_branch1"
name: "scale2a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "pool1"
top: "res2a_branch2a"
name: "res2a_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "bn2a_branch2a"
type: "BatchNorm"
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "scale2a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2a"
name: "res2a_branch2a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0856}
}
layer {
bottom: "res2a_branch2a"
top: "res2a_branch2b"
name: "res2a_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "bn2a_branch2b"
type: "BatchNorm"
}
layer {
bottom: "res2a_branch2b"
top: "res2a_branch2b"
name: "scale2a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2a_branch1"
bottom: "res2a_branch2b"
top: "res2a"
name: "res2a"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
bottom: "res2a"
top: "res2a"
name: "res2a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.195956}
}
layer {
bottom: "res2a"
top: "res2b_branch2a"
name: "res2b_branch2a"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "bn2b_branch2a"
type: "BatchNorm"
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "scale2b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2a"
name: "res2b_branch2a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0164339}
}
layer {
bottom: "res2b_branch2a"
top: "res2b_branch2b"
name: "res2b_branch2b"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "bn2b_branch2b"
type: "BatchNorm"
}
layer {
bottom: "res2b_branch2b"
top: "res2b_branch2b"
name: "scale2b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2a"
bottom: "res2b_branch2b"
top: "res2b"
name: "res2b"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
bottom: "res2b"
top: "res2b"
name: "res2b_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.2016}
}
layer {
bottom: "res2b"
top: "res3a_branch1"
name: "res3a_branch1"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "bn3a_branch1"
type: "BatchNorm"
}
layer {
bottom: "res3a_branch1"
top: "res3a_branch1"
name: "scale3a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res2b"
top: "res3a_branch2a"
name: "res3a_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "bn3a_branch2a"
type: "BatchNorm"
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "scale3a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2a"
name: "res3a_branch2a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0}
}
layer {
bottom: "res3a_branch2a"
top: "res3a_branch2b"
name: "res3a_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "bn3a_branch2b"
type: "BatchNorm"
}
layer {
bottom: "res3a_branch2b"
top: "res3a_branch2b"
name: "scale3a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3a_branch1"
bottom: "res3a_branch2b"
top: "res3a"
name: "res3a"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
bottom: "res3a"
top: "res3a"
name: "res3a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.05542}
}
layer {
bottom: "res3a"
top: "res3b_branch2a"
name: "res3b_branch2a"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "bn3b_branch2a"
type: "BatchNorm"
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "scale3b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2a"
name: "res3b_branch2a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0}
}
layer {
bottom: "res3b_branch2a"
top: "res3b_branch2b"
name: "res3b_branch2b"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "bn3b_branch2b"
type: "BatchNorm"
}
layer {
bottom: "res3b_branch2b"
top: "res3b_branch2b"
name: "scale3b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3a"
bottom: "res3b_branch2b"
top: "res3b"
name: "res3b"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
bottom: "res3b"
top: "res3b"
name: "res3b_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0664}
}
layer {
bottom: "res3b"
top: "res4a_branch1"
name: "res4a_branch1"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 1
pad: 0
stride: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "bn4a_branch1"
type: "BatchNorm"
}
layer {
bottom: "res4a_branch1"
top: "res4a_branch1"
name: "scale4a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res3b"
top: "res4a_branch2a"
name: "res4a_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "bn4a_branch2a"
type: "BatchNorm"
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "scale4a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2a"
name: "res4a_branch2a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0}
}
layer {
bottom: "res4a_branch2a"
top: "res4a_branch2b"
name: "res4a_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "bn4a_branch2b"
type: "BatchNorm"
}
layer {
bottom: "res4a_branch2b"
top: "res4a_branch2b"
name: "scale4a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4a_branch1"
bottom: "res4a_branch2b"
top: "res4a"
name: "res4a"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
bottom: "res4a"
top: "res4a"
name: "res4a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.014429}
}
layer {
bottom: "res4a"
top: "res4b_branch2a"
name: "res4b_branch2a"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "bn4b_branch2a"
type: "BatchNorm"
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "scale4b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2a"
name: "res4b_branch2a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0}
}
layer {
bottom: "res4b_branch2a"
top: "res4b_branch2b"
name: "res4b_branch2b"
type: "Convolution"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "bn4b_branch2b"
type: "BatchNorm"
}
layer {
bottom: "res4b_branch2b"
top: "res4b_branch2b"
name: "scale4b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4a"
bottom: "res4b_branch2b"
top: "res4b"
name: "res4b"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
bottom: "res4b"
top: "res4b"
name: "res4b_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0143507}
}
layer {
bottom: "res4b"
top: "res5a_branch1"
name: "res5a_branch1"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 1
pad: 0
stride: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "bn5a_branch1"
type: "BatchNorm"
}
layer {
bottom: "res5a_branch1"
top: "res5a_branch1"
name: "scale5a_branch1"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res4b"
top: "res5a_branch2a"
name: "res5a_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 2
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "bn5a_branch2a"
type: "BatchNorm"
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "scale5a_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2a"
name: "res5a_branch2a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0}
}
layer {
bottom: "res5a_branch2a"
top: "res5a_branch2b"
name: "res5a_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "bn5a_branch2b"
type: "BatchNorm"
}
layer {
bottom: "res5a_branch2b"
top: "res5a_branch2b"
name: "scale5a_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5a_branch1"
bottom: "res5a_branch2b"
top: "res5a"
name: "res5a"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
bottom: "res5a"
top: "res5a"
name: "res5a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0}
}
layer {
bottom: "res5a"
top: "res5b_branch2a"
name: "res5b_branch2a"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "bn5b_branch2a"
type: "BatchNorm"
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "scale5b_branch2a"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2a"
name: "res5b_branch2a_relu"
type: "ReLU"
# relu_param{ relu_threshold: 0.0}
}
layer {
bottom: "res5b_branch2a"
top: "res5b_branch2b"
name: "res5b_branch2b"
type: "Convolution"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "bn5b_branch2b"
type: "BatchNorm"
}
layer {
bottom: "res5b_branch2b"
top: "res5b_branch2b"
name: "scale5b_branch2b"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
bottom: "res5a"
bottom: "res5b_branch2b"
top: "res5b"
name: "res5b"
type: "Eltwise"
eltwise_param {
operation: SUM
}
}
layer {
bottom: "res5b"
top: "res5b_relu"
name: "res5b_relu"
type: "ReLU"
}
@lijiansong
Copy link
Author

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment