Last active
July 18, 2022 08:59
-
-
Save limitedeternity/5b848f8442248efa8f1db73e2dac164b to your computer and use it in GitHub Desktop.
for i, _ in enumerate(l, s) = for i in range(s, len(l) + s)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Require Import Coq.Lists.List Coq.Bool.Bool Lia. | |
Import Coq.Lists.List.ListNotations. | |
Fixpoint _range (a b d : nat) := | |
match d with | |
| 0 => [] | |
| S n => a :: _range (S a) b n | |
end. | |
Definition range a b := _range a b (b - a). | |
(* | |
Fixpoint less n m : bool := | |
match n, m with | |
| 0, 0 => false | |
| 0, S _ => true | |
| S _, 0 => false | |
| S n, S m => less n m | |
end. | |
Fixpoint range (a b : nat) := | |
if less a b then | |
match b with | |
| 0 => [] | |
| S n => range a n ++ [n] | |
end | |
else []. | |
*) | |
Eval compute in range 0 0. | |
Eval compute in range 0 5. | |
Eval compute in range 5 0. | |
Eval compute in range 5 10. | |
Fixpoint enumerate (T : Type) (l : list T) (s : nat) := | |
match l with | |
| [] => [] | |
| h :: t => (s, h) :: enumerate T t (S s) | |
end. | |
Eval simpl in enumerate nat [0;1;2;3;4] 0. | |
Eval simpl in enumerate nat [5;6;7;8;9] 5. | |
Theorem enum_prop : forall (T : Type) (l : list T) (s : nat), | |
enumerate T l s = [] -> l = []. | |
Proof. | |
intros. induction l. | |
- reflexivity. | |
- pose proof nil_cons. symmetry. specialize (H0 T a l). discriminate. | |
Qed. | |
Theorem enum_map_prop : forall (T : Type) (l : list T) (s : nat), | |
map fst (enumerate T l s) = [] -> enumerate T l s = []. | |
Proof. | |
intros. cut (l = [] -> enumerate T l s = []). 2: { | |
intros. now rewrite H0. | |
} | |
induction l. | |
- reflexivity. | |
- intros. apply H0. symmetry. pose proof nil_cons. specialize (H1 T a l). discriminate. | |
Qed. | |
Theorem enumerate_eq_range : forall (T : Type) (l : list T) (s : nat), | |
map fst (enumerate T l s) = range s (length l + s). | |
Proof. | |
induction l. | |
- intro s. cbn. now replace (s - s) with 0 by lia. | |
- induction s; cbn; rewrite IHl; unfold range. | |
+ replace (length l + 0) with (length l) by lia. | |
replace (length l + 1 - 1) with (length l) by lia. | |
now replace (length l + 1) with (S (length l)) by lia. | |
+ replace (length l + S (S s) - S (S s)) with (length l) by lia. | |
replace (length l + S s - s) with (S (length l)) by lia; cbn. | |
now replace (S (length l + S s)) with (length l + S (S s)) by lia. | |
Qed. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment